Aberrant epigenetic silencing is triggered by a transient reduction in gene expression

Jon A. Oyer, Adrian Chu, Sukhmani Brar, Mitchell S. Turker

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

Background: Aberrant epigenetic silencing plays a major role in cancer formation by inactivating tumor suppressor genes. While the endpoints of aberrant silencing are known, i.e., promoter region DNA methylation and altered histone modifications, the triggers of silencing are not known. We used the tet-off system to test the hypothesis that a transient reduction in gene expression will sensitize a promoter to undergo epigenetic silencing. Methodology/Principal Findings: The tet responsive promoter (PTRE) was used to drive expression of the selectable human HPRT cDNA in independent transfectants of an Hprt deficient mouse cell line. In this system, high basal HPRT expression is greatly reduced when doxycycline (Dox) is added to the culture medium. Exposure of the PTRE-HPRT transfectants to Dox induced HPRT deficient clones in a time dependent manner. A molecular analysis demonstrated promoter region DNA methylation, loss of histone modifications associated with expression (i.e., H3 lysine 9 and 14 acetylation and lysine 4 methylation), and acquisition of the repressive histone modification H3 lysine 9 methylation. These changes, which are consistent with aberrant epigenetic silencing, were not present in the Dox-treated cultures, with the exception of reduced H3 lysine 14 acetylation. Silenced alleles readily reactivated spontaneously or after treatment of cells with inhibitors of histone deacetylation and/or DNA methylation, but re-silencing of reactivated alleles did not require a new round of Dox exposure. Inhibition of histone deacetylation inhibited both the induction of silencing and re-silencing, whereas inhibition of DNA methylation had no such effect. Conclusions/Significance: This study demonstrates that a transient reduction in gene expression triggers a pathway for aberrant silencing in mammalian cells and identifies histone deacetylation as a critical early step in this process. DNA methylation, in contrast, is a secondary step in the silencing pathway under study. A model to explain these observations is offered.

Original languageEnglish (US)
Article numbere4832
JournalPloS one
Volume4
Issue number3
DOIs
StatePublished - Mar 12 2009

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Aberrant epigenetic silencing is triggered by a transient reduction in gene expression'. Together they form a unique fingerprint.

Cite this