Activity-dependent regulation of astrocyte GAT levels during synaptogenesis

Allie K. Muthukumar, Tobias Stork, Marc R. Freeman

Research output: Contribution to journalArticlepeer-review

94 Scopus citations

Abstract

Astrocytic uptake of GABA through GABA transporters (GATs) is an important mechanism regulating excitatory/inhibitory balance in the nervous system; however, mechanisms by which astrocytes regulate GAT levels are undefined. We found that at mid-pupal stages the Drosophila melanogaster CNS neuropil was devoid of astrocyte membranes and synapses. Astrocyte membranes subsequently infiltrated the neuropil coordinately with synaptogenesis, and astrocyte ablation reduced synapse numbers by half, indicating that Drosophila astrocytes are pro-synaptogenic. Shortly after synapses formed in earnest, GAT was upregulated in astrocytes. Ablation or silencing of GABAergic neurons or disruption of metabotropic GABA receptor 1 and 2 (GABA B R1/2) signaling in astrocytes led to a decrease in astrocytic GAT. Notably, developmental depletion of astrocytic GABA B R1/2 signaling suppressed mechanosensory-induced seizure activity in mutants with hyperexcitable neurons. These data reveal that astrocytes actively modulate GAT expression via metabotropic GABA receptor signaling and highlight the importance of precise regulation of astrocytic GAT in modulation of seizure activity.

Original languageEnglish (US)
Pages (from-to)1340-1350
Number of pages11
JournalNature Neuroscience
Volume17
Issue number10
DOIs
StatePublished - Oct 1 2014
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Activity-dependent regulation of astrocyte GAT levels during synaptogenesis'. Together they form a unique fingerprint.

Cite this