TY - GEN
T1 - An objective assessment to investigate the impact of turning angle on freezing of gait in Parkinson's disease
AU - Bertoli, Matilde
AU - Cereatti, Andrea
AU - Della Croce, Ugo
AU - Mancini, Martina
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2018/3/23
Y1 - 2018/3/23
N2 - Freezing of gait (FoG) is often described in subjects with Parkinson's disease (PD) as a sudden inability to continue the forward walking progression. FoG occurs most often during turning, especially at sharp angles. Here, we investigated 180 and 360 degrees turns in two groups: PD subjects reporting FoG (FoG+), and PD subjects without FoG (FoG-). Forty-three subjects (25 FoG+, 18 FoG-) wore an inertial sensor on their back while walking back and forth continuously for 2 min (reversing direction with a 180° turn), and while turning in place for 1 min (alternating 360° turning in opposite directions). Objective measures (turn duration, peak velocity, jerkiness and range of acceleration) were computed during the turns and compared across FoG+ and FoG-groups. Results showed that FoG+ compared to FoG-took significantly a longer time to complete 360° turns than 180° turns. A significant lower turn peak velocity, higher jerkiness and an increased range of medio-lateral acceleration was also found in FoG+. Significant differences between the two groups across the two turning tasks validated the hypothesis that sharper turns might cause higher instability in FoG+ compared to FoG-.
AB - Freezing of gait (FoG) is often described in subjects with Parkinson's disease (PD) as a sudden inability to continue the forward walking progression. FoG occurs most often during turning, especially at sharp angles. Here, we investigated 180 and 360 degrees turns in two groups: PD subjects reporting FoG (FoG+), and PD subjects without FoG (FoG-). Forty-three subjects (25 FoG+, 18 FoG-) wore an inertial sensor on their back while walking back and forth continuously for 2 min (reversing direction with a 180° turn), and while turning in place for 1 min (alternating 360° turning in opposite directions). Objective measures (turn duration, peak velocity, jerkiness and range of acceleration) were computed during the turns and compared across FoG+ and FoG-groups. Results showed that FoG+ compared to FoG-took significantly a longer time to complete 360° turns than 180° turns. A significant lower turn peak velocity, higher jerkiness and an increased range of medio-lateral acceleration was also found in FoG+. Significant differences between the two groups across the two turning tasks validated the hypothesis that sharper turns might cause higher instability in FoG+ compared to FoG-.
KW - FoG
KW - PD
KW - inertial sensor
KW - turn
UR - http://www.scopus.com/inward/record.url?scp=85049984458&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049984458&partnerID=8YFLogxK
U2 - 10.1109/BIOCAS.2017.8325122
DO - 10.1109/BIOCAS.2017.8325122
M3 - Conference contribution
AN - SCOPUS:85049984458
T3 - 2017 IEEE Biomedical Circuits and Systems Conference, BioCAS 2017 - Proceedings
SP - 1
EP - 4
BT - 2017 IEEE Biomedical Circuits and Systems Conference, BioCAS 2017 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE Biomedical Circuits and Systems Conference, BioCAS 2017
Y2 - 19 October 2017 through 21 October 2017
ER -