Analysis of DCE-MRI for Early Prediction of Breast Cancer Therapy Response

Archana Machireddy, Guillaume Thibault, Wei Huang, Xubo Song

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Positive response to neoadjuvant chemotherapy (NACT) has been correlated to better long-term outcomes in breast cancer treatment. Early prediction of response to NACT can help modify the regimen for non-responding patients, sparing them of potential toxicities of ineffective therapies. It has been observed that tumor functions such as vascularization and vascular permeability change even before noticeable changes occur in the tumor size in response to the treatment. Therefore, it is essential to have reliable imaging based features to measure these changes. Texture analysis on parametric maps from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has shown to be a good predictor of breast cancer response to NACT at an early stage. But hand crafted texture features might not be able to capture the rich spatio-temporal information in the parametric maps. In this work, we studied the ability of convolutional neural networks in predicting the response to NACT at an early stage.

Original languageEnglish (US)
Title of host publication40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages682-685
Number of pages4
ISBN (Electronic)9781538636466
DOIs
StatePublished - Oct 26 2018
Event40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 - Honolulu, United States
Duration: Jul 18 2018Jul 21 2018

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2018-July
ISSN (Print)1557-170X

Other

Other40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
Country/TerritoryUnited States
CityHonolulu
Period7/18/187/21/18

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Analysis of DCE-MRI for Early Prediction of Breast Cancer Therapy Response'. Together they form a unique fingerprint.

Cite this