TY - JOUR
T1 - Binding mechanisms of PEGylated ligands reveal multiple effects of the PEG scaffold
AU - Das, Raibatak
AU - Baird, Emily
AU - Allen, Scott
AU - Baird, Barbara
AU - Holowka, David
AU - Goldstein, Byron
PY - 2008/1/22
Y1 - 2008/1/22
N2 - A series of synthetic ligands consisting of poly(ethylene glycol) (PEG), capped on one or both ends with the hapten 2,4-dinitrophenyl (DNP), were previously shown to be potent inhibitors of cellular activation in RBL mast cells stimulated by a multivalent antigen [Baird, E. J., Holowka, D., Coates, G. W., and Baird, B. (2003) Biochemistry 42, 12739-12748]. In this study, we systematically investigated the effect of increasing length of the PEG scaffold on the binding of these monovalent and bivalent ligands to anti-DNP IgE in solution. Our analysis reveals evidence for an energetically favorable interaction between two monovalent ligands bound to the same receptor, when the PEG molecular mass exceeds ∼5 kDa. Additionally, for ligands with much higher molecular masses (> 10 kDa PEG), the binding of a single ligand apparently leads to a steric exclusion of the second binding site by the bulky PEG scaffold. These results are further corroborated by data from an alternate fluorescence-based assay that we developed to quantify the capacity of these ligands to displace a small hapten bound to IgE. This new assay monitors the displacement of a small, receptor-bound hapten by a competitive monovalent ligand and thus quantifies the competitive inhibition offered by a monovalent ligand. We also show that, for bivalent ligands, inhibitory capacity is correlated with the capacity to form effective intramolecular cross-links with IgE.
AB - A series of synthetic ligands consisting of poly(ethylene glycol) (PEG), capped on one or both ends with the hapten 2,4-dinitrophenyl (DNP), were previously shown to be potent inhibitors of cellular activation in RBL mast cells stimulated by a multivalent antigen [Baird, E. J., Holowka, D., Coates, G. W., and Baird, B. (2003) Biochemistry 42, 12739-12748]. In this study, we systematically investigated the effect of increasing length of the PEG scaffold on the binding of these monovalent and bivalent ligands to anti-DNP IgE in solution. Our analysis reveals evidence for an energetically favorable interaction between two monovalent ligands bound to the same receptor, when the PEG molecular mass exceeds ∼5 kDa. Additionally, for ligands with much higher molecular masses (> 10 kDa PEG), the binding of a single ligand apparently leads to a steric exclusion of the second binding site by the bulky PEG scaffold. These results are further corroborated by data from an alternate fluorescence-based assay that we developed to quantify the capacity of these ligands to displace a small hapten bound to IgE. This new assay monitors the displacement of a small, receptor-bound hapten by a competitive monovalent ligand and thus quantifies the competitive inhibition offered by a monovalent ligand. We also show that, for bivalent ligands, inhibitory capacity is correlated with the capacity to form effective intramolecular cross-links with IgE.
UR - http://www.scopus.com/inward/record.url?scp=38349128433&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38349128433&partnerID=8YFLogxK
U2 - 10.1021/bi702094j
DO - 10.1021/bi702094j
M3 - Article
C2 - 18154361
AN - SCOPUS:38349128433
SN - 0006-2960
VL - 47
SP - 1017
EP - 1030
JO - Biochemistry
JF - Biochemistry
IS - 3
ER -