TY - JOUR
T1 - Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-X(L)
AU - Gross, Atan
AU - Pilcher, Kirsten
AU - Blachly-Dyson, Elizabeth
AU - Basso, Emy
AU - Jockel, Jennifer
AU - Bassik, Michael C.
AU - Korsmeyer, Stanley J.
AU - Forte, Michael
PY - 2000/5
Y1 - 2000/5
N2 - The BCL-2 family includes both proapoptotic (e.g., BAX and BAK) and antiapoptotic (e.g., BCL-2 and BCL-X(L)) molecules. The cell death-regulating activity of BCL-2 members appears to depend on their ability to modulate mitochondrial function, which may include regulation of the mitochondrial permeability transition pore (PTP). We examined the function of BAX and BCL- X(L) using genetic and biochemical approaches in budding yeast because studies with yeast suggest that BCL-2 family members act upon highly conserved mitochondrial components. In this study we found that in wild-type yeast, BAX induced hyperpolarization of mitochondria, production of reactive oxygen species, growth arrest, and cell death; however, cytochrome c was not released detectably despite the induction of mitochondrial dysfunction. Coexpression of BCL-X(L) prevented all BAX-mediated responses. We also assessed the function of BCL-X(L) and BAX in the same strain of Saccharomyces cerevisiae with deletions of selected mitochondrial proteins that have been implicated in the function of BCL-2 family members. BAX-induced growth arrest was independent of the tested mitochondrial components, including voltage- dependent anion channel (VDAC), the catalytic β subunit or the δ subunit of the F0F1-ATP synthase, mitochondrial cyclophilin, cytochrome c, and proteins encoded by the mitochondrial genome as revealed by [rho0] cells. In contrast, actual cell killing was dependent upon select mitochondrial components including the β subunit of ATP synthase and mitochondrial genome- encoded proteins but not VDAC. The BCL-X(L) protection from either BAX- induced growth arrest or cell killing proved to be independent of mitochondrial components. Thus, BAX induces two cellular processes in yeast which can each be abrogated by BCL-X(L): cell arrest, which does not require aspects of mitochondrial biochemistry, and cell killing, which does.
AB - The BCL-2 family includes both proapoptotic (e.g., BAX and BAK) and antiapoptotic (e.g., BCL-2 and BCL-X(L)) molecules. The cell death-regulating activity of BCL-2 members appears to depend on their ability to modulate mitochondrial function, which may include regulation of the mitochondrial permeability transition pore (PTP). We examined the function of BAX and BCL- X(L) using genetic and biochemical approaches in budding yeast because studies with yeast suggest that BCL-2 family members act upon highly conserved mitochondrial components. In this study we found that in wild-type yeast, BAX induced hyperpolarization of mitochondria, production of reactive oxygen species, growth arrest, and cell death; however, cytochrome c was not released detectably despite the induction of mitochondrial dysfunction. Coexpression of BCL-X(L) prevented all BAX-mediated responses. We also assessed the function of BCL-X(L) and BAX in the same strain of Saccharomyces cerevisiae with deletions of selected mitochondrial proteins that have been implicated in the function of BCL-2 family members. BAX-induced growth arrest was independent of the tested mitochondrial components, including voltage- dependent anion channel (VDAC), the catalytic β subunit or the δ subunit of the F0F1-ATP synthase, mitochondrial cyclophilin, cytochrome c, and proteins encoded by the mitochondrial genome as revealed by [rho0] cells. In contrast, actual cell killing was dependent upon select mitochondrial components including the β subunit of ATP synthase and mitochondrial genome- encoded proteins but not VDAC. The BCL-X(L) protection from either BAX- induced growth arrest or cell killing proved to be independent of mitochondrial components. Thus, BAX induces two cellular processes in yeast which can each be abrogated by BCL-X(L): cell arrest, which does not require aspects of mitochondrial biochemistry, and cell killing, which does.
UR - http://www.scopus.com/inward/record.url?scp=0033993820&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033993820&partnerID=8YFLogxK
U2 - 10.1128/MCB.20.9.3125-3136.2000
DO - 10.1128/MCB.20.9.3125-3136.2000
M3 - Article
C2 - 10757797
AN - SCOPUS:0033993820
SN - 0270-7306
VL - 20
SP - 3125
EP - 3136
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 9
ER -