Central programming of postural movements: Adaptation to altered support-surface configurations

F. B. Horak, L. M. Nashner

Research output: Contribution to journalArticlepeer-review

1716 Scopus citations


The authors studied the extent to which automatic postural actions in standing human subjects are organized by a limited repertoire of central motor programs. Subjects stood on support surfaces of various lengths, which forced them to adopt different postural movement strategies to compensate for the same external perturbations. The authors assessed whether a continuum or a limited set of muscle activation patterns was used to produce different movement patterns and the extent to which movement patterns were influenced by prior experience. Exposing subjects standing on a normal support surface to brief forward and backward horizontal surface perturbations elicited relatively sterotyped patterns of leg and trunk muscle activation with 73- to 110-ms latencies. Activity began in the ankle joint muscles and then radiated in sequence to thigh and then trunk muscles on the same dorsal or ventral aspect of the body. This activation pattern exerted compensatory torques about the ankle joints, which restored equilibrium by moving the body center of mass forward or backward. This pattern has been termed the ankle strategy because it restores equilibrium by moving the body primarily around the ankle joints. To successfully maintain balance while standing on a support surface short in relation to foot length, subjects activated leg and trunk muscles at similar latencies but organized the activity differently. The trunk and thigh muscles antagonistic to those used in the ankle strategy were activated in the opposite proximal-to-distal sequence, whereas the ankle muscles were generally unresponsive. This activation pattern produced a compensatory horizontal shear force against the support surface but little, if any, ankle torque. This pattern has been termed the hip strategy, because the resulting motion is focused primarily about the hip joints. Exposing subjects to horizontal surface perturbations while standing on support surfaces intermediate in length between the shortest and longest elicited more complex postural movements and associated muscle activation patterns that resembled ankle and hip strategies combined in different temporal relations. These complex postural movements were executed with combinations of torque and horizontal shear forces and motions of ankle and hip joints. During the first 5-20 practice trials immediately following changes from one support surface length to another, response latencies were unchanged. The activation patterns, however, were complex and resembled the patterns observed during well-practiced stance on surfaces of intermediate lengths. During the course of practice, the relative amplitudes and timing of the ankle and hip strategy components changed progressively. The authors' results have demonstrated that subjects can synthesize a continuum of different postural movements by combining two distinct strategies in different magnitudes and temporal relations. The combination of strategies used in a particular instance is influenced not only by the current support-surface conditions but also by the subject's recent experiences. These observations are consistent with the hypothesis that postural actions are organized by a limited repertoire of central programs selected in advance of movement.

Original languageEnglish (US)
Pages (from-to)1369-1381
Number of pages13
JournalJournal of neurophysiology
Issue number6
StatePublished - 1986
Externally publishedYes

ASJC Scopus subject areas

  • Neuroscience(all)
  • Physiology


Dive into the research topics of 'Central programming of postural movements: Adaptation to altered support-surface configurations'. Together they form a unique fingerprint.

Cite this