Combining longitudinal studies of PSA

Lurdes Y.T. Inoue, Ruth Etzioni, Elizabeth H. Slate, Christopher Morrell, David F. Penson

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


Prostate-specific antigen (PSA) is a biomarker commonly used to screen for prostate cancer. Several studies have examined PSA growth rates prior to prostate cancer diagnosis. However, the resulting estimates are highly variable. In this article we propose a non-linear Bayesian hierarchical model to combine longitudinal data on PSA growth from three different studies. Our model enables novel investigations into patterns of PSA growth that were previously impossible due to sample size limitations. The goals of our analysis are twofold: first, to characterize growth rates of PSA accounting for differences when combining data from different studies; second, to investigate the impact of clinical covariates such as advanced disease and unfavorable histology on PSA growth rates.

Original languageEnglish (US)
Pages (from-to)483-500
Number of pages18
Issue number3
StatePublished - Jul 2004
Externally publishedYes


  • Bayesian hierarchical model
  • Interval-censored data
  • Longitudinal data
  • Meta-analysis
  • Prostate-specific antigen (PSA)

ASJC Scopus subject areas

  • General Medicine


Dive into the research topics of 'Combining longitudinal studies of PSA'. Together they form a unique fingerprint.

Cite this