TY - JOUR
T1 - Comparing fall detection methods in people with multiple sclerosis
T2 - A prospective observational cohort study
AU - Hildebrand, Andrea
AU - Jacobs, Peter G.
AU - Folsom, Jonathon G.
AU - Mosquera-Lopez, Clara
AU - Wan, Eric
AU - Cameron, Michelle H.
N1 - Funding Information:
The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Peter Jacobs, Jonathon Folsom, and Eric Wan report financial relationships with MotioSens, Inc. Peter Jacobs and Eric Wan jointly hold a patent for a position tracking and mobility assessment system (8810,388). Eric Wan reports funding for his institution by the National Institutes for Health, National Institute of Diabetes and Digestive and Kidney Diseases. Michelle Cameron reports funding for her institution by the US Department of Veterans Affairs, Rehabilitation and Research Service; and the National Multiple Sclerosis Society.
Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/11
Y1 - 2021/11
N2 - Background Falls occur across the population but are more common, and have more negative sequelae, in people with multiple sclerosis (MS). Given the prevalence and impact of falls, accurate measures of fall frequency are needed. This study compares the sensitivity and false discovery rates of three methods of fall detection: the current gold standard, prospective paper fall calendars, real-time self-reporting and automated detection, the latter two from a novel body-worn device. Methods Falls in twenty-five people with MS were recorded for eight weeks with prospective fall calendars, real-time body-worn self-report, and an automated body-worn detector concurrently. Eligible individuals were adults with MS enrolled in a randomized controlled trial of a fall prevention intervention. Entry criteria were at least two falls or near-falls in the previous two months, Expanded Disability Status Scale ≤ 6.0, community dwelling, and no MS relapse in the previous month. The sensitivity (proportion of true falls detected) and false discovery rates (proportion of false reports generated) of the fall detection methods were compared. A true fall was a fall reported by at least two methods. A false report was a fall reported by only one method. The trial is registered on ClinicalTrials.gov (NCT02583386) and is closed. Results In the 1,276 person-days of fall counting with all three methods in use simultaneously there were 1344 unique fall events. Of these, 8.5% (114) were true falls and 91.5% (1230) were false reports. Fall calendars had the lowest sensitivity (0.614) and the lowest false discovery rate (0.067). The automated detector had the highest sensitivity (0.921) and the highest false discovery rate (0.919). All methods generated under one false report per day. There were no fall detection-related adverse events. Conclusion Fall calendars likely underestimate fall frequency by around 40%. The automated detector evaluated here misses very few falls but likely overestimates the number of falls by around one fall per day. Additional research is needed to produce an ideal fall detection and counting method for use in clinical and research applications.
AB - Background Falls occur across the population but are more common, and have more negative sequelae, in people with multiple sclerosis (MS). Given the prevalence and impact of falls, accurate measures of fall frequency are needed. This study compares the sensitivity and false discovery rates of three methods of fall detection: the current gold standard, prospective paper fall calendars, real-time self-reporting and automated detection, the latter two from a novel body-worn device. Methods Falls in twenty-five people with MS were recorded for eight weeks with prospective fall calendars, real-time body-worn self-report, and an automated body-worn detector concurrently. Eligible individuals were adults with MS enrolled in a randomized controlled trial of a fall prevention intervention. Entry criteria were at least two falls or near-falls in the previous two months, Expanded Disability Status Scale ≤ 6.0, community dwelling, and no MS relapse in the previous month. The sensitivity (proportion of true falls detected) and false discovery rates (proportion of false reports generated) of the fall detection methods were compared. A true fall was a fall reported by at least two methods. A false report was a fall reported by only one method. The trial is registered on ClinicalTrials.gov (NCT02583386) and is closed. Results In the 1,276 person-days of fall counting with all three methods in use simultaneously there were 1344 unique fall events. Of these, 8.5% (114) were true falls and 91.5% (1230) were false reports. Fall calendars had the lowest sensitivity (0.614) and the lowest false discovery rate (0.067). The automated detector had the highest sensitivity (0.921) and the highest false discovery rate (0.919). All methods generated under one false report per day. There were no fall detection-related adverse events. Conclusion Fall calendars likely underestimate fall frequency by around 40%. The automated detector evaluated here misses very few falls but likely overestimates the number of falls by around one fall per day. Additional research is needed to produce an ideal fall detection and counting method for use in clinical and research applications.
KW - Accidental falls
KW - Ambulatory monitoring
KW - Multiple sclerosis
KW - Self report
KW - Wearable electronic devices
UR - http://www.scopus.com/inward/record.url?scp=85115398229&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115398229&partnerID=8YFLogxK
U2 - 10.1016/j.msard.2021.103270
DO - 10.1016/j.msard.2021.103270
M3 - Article
C2 - 34562766
AN - SCOPUS:85115398229
SN - 2211-0348
VL - 56
JO - Multiple sclerosis and related disorders
JF - Multiple sclerosis and related disorders
M1 - 103270
ER -