Degradation of cytochrome P450 2E1: Selective loss after labilization of the enzyme

Daniel J. Tierney, Arthur L. Haas, Dennis R. Koop

Research output: Contribution to journalArticlepeer-review

143 Scopus citations

Abstract

Mechanism-based inactivation of cytochrome P450 can result in the chemical modification of the heme, the protein, or both as a result of covalent binding of modified heme to the protein. In the present study we took advantage of different modes of inactivation of P450 2E1 by CCl4, 1-aminobenzotriazole, or 3-amino-1,2,4-triazole to investigate parameters which target P450 2E1 for proteolysis from the microsomal membrane. Treatment of mice with CCl4 at the point of maximal induction of P450 2E1 after a single oral dose of acetone resulted in the complete loss of P450 2E1-dependent p-nitrophenol hydroxylation and a 75% loss of immunochemically detectable protein within 1 h of administration. Treatment with 1-aminobenzotriazole at the point of maximal induction caused a complete loss of P450 2E1-dependent p-nitrophenol hydroxylation but only a 12% loss of immunochemically detectable protein 1 h after administration. Treatment of mice with 3-amino-1,2,4-triazole caused a rapid loss of both catalytic activity and microsomal p-nitrophenol hydroxylase activity. However, unlike CCl4 treatment, the activity and enzyme level rebounded 5 and 9 h after treatment. The P450 2E1 ligand, 4-methylpyrazole, administered at the point of maximal induction maintained the acetone-induced catalytic and immunochemical level of P450 2E1. These results suggest that differentially modified forms of P450 2E1 show a characteristic susceptibility to degradation. While there are many potential pathways for protein degradation, the loss of P450 2E1 was associated with increased formation of hieh molecular weight microsomal ubiquitin conjugates. The formation of ubiquitin-conjugated microsomal protein which correlates with P450 2E1 loss suggests that ubiquitination may represent a proteolytic signal for the rapid and selective proteolysis of certain labilized conformations of P450 2E1 from the endoplasmic reticulum.

Original languageEnglish (US)
Pages (from-to)9-16
Number of pages8
JournalArchives of Biochemistry and Biophysics
Volume293
Issue number1
DOIs
StatePublished - Feb 14 1992
Externally publishedYes

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Degradation of cytochrome P450 2E1: Selective loss after labilization of the enzyme'. Together they form a unique fingerprint.

Cite this