Detection of coronary artery stenosis with power Doppler imaging

Flordeliza S. Villanueva, Edward W. Gertz, Melissa Csikari, Gregory Pulido, David Fisher, Jiri Sklenar

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


Background - Power Doppler is a new imaging method for detecting microbubbles during myocardial contrast echocardiography (MCE) based on the registration of variance resulting from ultrasound-induced nonlinear bubble behavior. We tested the hypothesis that power Doppler imaging can be used to quantify coronary stenoses. Methods and Results - Three left anterior descending (LAD) coronary stenoses of varying severity were created in each of 9 open-chest dogs. MCE was performed by continuous intravenous infusion of a nitrogen-filled bilayer shell microbubble, PB 127, during triggered power Doppler imaging at incremental pulsing intervals. MCE and radiolabeled microsphere measurements were made at baseline and during each stenosis, with and without adenosine stress. Videointensities in the LAD and left circumflex (LCx) beds were plotted against pulsing interval and fit to a previously described exponential function modeling microbubble destruction and replenishment, which was used to derive parameters of bubble velocity (β) and peak plateau videointensity (A). Contrast defects matching the location of radiolabeled microsphere hypoperfusion were clearly seen, without need for image processing. The product of β and A was linearly related to LAD/LCx flow (r=0.90, P<0.0001) and inversely related to stenosis gradient (r=-0.70, P<0.0001). Endocardial/epicardial flow ratios were visualized and quantifiable. Conclusions - As with B-mode harmonics, a model of microbubble destruction/replenishment can be applied to power Doppler data as a means to detect a broad range of stenoses. Image clarity and the lack of attenuation or requirement for background subtraction are additional advantages of this imaging approach. Power Doppler MCE imaging holds promise for the detection of coronary artery disease.

Original languageEnglish (US)
Pages (from-to)2624-2630
Number of pages7
Issue number21
StatePublished - May 29 2001
Externally publishedYes


  • Contrast media
  • Coronary disease
  • Echocardiography

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)


Dive into the research topics of 'Detection of coronary artery stenosis with power Doppler imaging'. Together they form a unique fingerprint.

Cite this