Distinct actions of Akt1 on skeletal architecture and function

Aditi Mukherjee, Emily A. Larson, Robert F. Klein, Peter Rotwein

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Skeletal integrity is dependent on the coordinated actions of bone-forming osteoblasts and bone-resorbing osteoclasts, which recognize and respond to multiple environmental inputs. Here we have studied the roles in bone development and growth of Akt1 and Akt2, two closely related signaling proteins, by evaluating mice lacking either of these enzymes. Global deficiency of Akt1 but not Akt2 caused a reduction in whole body and femoral bone mineral density, in femoral cortical thickness and volume, and in trabecular thickness in both males and females when measured at 20-weeks of age, which was reflected in diminished femoral resistance to fracture. Haplo-deficiency of Akt1 in male mice also decreased femoral cortical and trabecular skeletal parameters, and reduced bone strength. Cell-based studies showed that genetic Akt1 deficiency diminished the rate of proliferation of osteoblast progenitors and impaired osteoclast differentiation in primary culture but that loss of Akt2 did not. Our results demonstrate differential effects of Akt1 and Akt2 on skeletal maturation and architecture through actions on both osteoblast and osteoclast precursors.

Original languageEnglish (US)
Article numbere93040
JournalPloS one
Volume9
Issue number3
DOIs
StatePublished - Mar 24 2014

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Distinct actions of Akt1 on skeletal architecture and function'. Together they form a unique fingerprint.

Cite this