TY - JOUR
T1 - Effects of dietary omega-3 fatty acids on ventricular function in dogs with healed myocardial infarctions
T2 - In vivo and in vitro studies
AU - Billman, George E.
AU - Nishijima, Yoshinori
AU - Belevych, Andriy E.
AU - Terentyev, Dmitry
AU - Xu, Ying
AU - Haizlip, Kaylan M.
AU - Monasky, Michelle M.
AU - Hiranandani, Nitisha
AU - Harris, William S.
AU - Gyorke, Sandor
AU - Carnes, Cynthia A.
AU - Janssen, Paul M.L.
PY - 2010/4
Y1 - 2010/4
N2 - Since omega-3 polyunsaturated fatty acids (n-3 PUFAs) can alter ventricular myocyte calcium handling, these fatty acids could adversely affect cardiac contractile function, particularly following myocardial infarction. Therefore, 4 wk after myocardial infarction, dogs were randomly assigned to either placebo (corn oil, 1 g/day, n = 16) or n-3 PUFAs supplement [docosahexaenoic acid (DHA) + eicosapentaenoic acid (EPA) ethyl esters; 1, 2, or 4 g/day; n = 7, 8, and 12, respectively] groups. In vivo, ventricular function was evaluated by echocardiography before and after 3 mo of treatment. At the end of the 3-mo period, hearts were removed and in vitro function was evaluated using right ventricular trabeculae and isolated left ventricular myocytes. The treatment elicited significant (P < 0.0001) dose-dependent increases (16.4-fold increase with 4 g/day) in left ventricular tissue and red blood cell n-3 PUFA levels (EPA + DHA, placebo, 0.42 ± 0.04; 1 g/day, 3.02 ± 0.23; 2 g/day, 3.63 ± 0.17; and 4 g/day, 6.97 ± 0.33%). Regardless of the dose, n-3 PUFA treatment did not alter ventricular function in the intact animal (e.g., 4 g/day, fractional shortening: pre, 42.9 ± 1.6 vs. post, 40.1 ± 1.7%; placebo: pre, 39.2 ± 1.3 vs. post, 38.4 ± 1.6%). The developed force per cross-sectional area, changes in length- and frequency-dependent behavior in contractile force, and the inotropic response to β-adrenoceptor activation were also similar for trabeculae obtained from placebo- or n-3 PUFA-treated dogs. Finally, calcium currents and calcium transients were the same in myocytes from n-3 PUFA- and placebo-treated dogs. Thus dietary n-3 PUFAs did not adversely alter either in vitro or in vivo ventricular contractile function in dogs with healed infarctions.
AB - Since omega-3 polyunsaturated fatty acids (n-3 PUFAs) can alter ventricular myocyte calcium handling, these fatty acids could adversely affect cardiac contractile function, particularly following myocardial infarction. Therefore, 4 wk after myocardial infarction, dogs were randomly assigned to either placebo (corn oil, 1 g/day, n = 16) or n-3 PUFAs supplement [docosahexaenoic acid (DHA) + eicosapentaenoic acid (EPA) ethyl esters; 1, 2, or 4 g/day; n = 7, 8, and 12, respectively] groups. In vivo, ventricular function was evaluated by echocardiography before and after 3 mo of treatment. At the end of the 3-mo period, hearts were removed and in vitro function was evaluated using right ventricular trabeculae and isolated left ventricular myocytes. The treatment elicited significant (P < 0.0001) dose-dependent increases (16.4-fold increase with 4 g/day) in left ventricular tissue and red blood cell n-3 PUFA levels (EPA + DHA, placebo, 0.42 ± 0.04; 1 g/day, 3.02 ± 0.23; 2 g/day, 3.63 ± 0.17; and 4 g/day, 6.97 ± 0.33%). Regardless of the dose, n-3 PUFA treatment did not alter ventricular function in the intact animal (e.g., 4 g/day, fractional shortening: pre, 42.9 ± 1.6 vs. post, 40.1 ± 1.7%; placebo: pre, 39.2 ± 1.3 vs. post, 38.4 ± 1.6%). The developed force per cross-sectional area, changes in length- and frequency-dependent behavior in contractile force, and the inotropic response to β-adrenoceptor activation were also similar for trabeculae obtained from placebo- or n-3 PUFA-treated dogs. Finally, calcium currents and calcium transients were the same in myocytes from n-3 PUFA- and placebo-treated dogs. Thus dietary n-3 PUFAs did not adversely alter either in vitro or in vivo ventricular contractile function in dogs with healed infarctions.
KW - Contractility
KW - Diet
KW - Force-frequency relationship
KW - Frank-Starling mechanism
KW - Heart failure
KW - Sudden cardiac death
UR - http://www.scopus.com/inward/record.url?scp=77949706505&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77949706505&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.01065.2009
DO - 10.1152/ajpheart.01065.2009
M3 - Article
C2 - 20097770
AN - SCOPUS:77949706505
SN - 0363-6135
VL - 298
SP - H1219-H1228
JO - American Journal of Physiology
JF - American Journal of Physiology
IS - 4
ER -