TY - JOUR
T1 - Effects of ferumoxytol on quantitative PET measurements in simultaneous PET/MR whole-body imaging
T2 - a pilot study in a baboon model
AU - Borra, Ronald J.H.
AU - Cho, Hoon Sung
AU - Bowen, Spencer L.
AU - Attenberger, Ulrike
AU - Arabasz, Grae
AU - Catana, Ciprian
AU - Josephson, Lee
AU - Rosen, Bruce R.
AU - Guimaraes, Alexander R.
AU - Hooker, Jacob M.
N1 - Funding Information:
This research was carried out in whole or in part at the Athinoula A. Martinos Center for Biomedical Imaging at the Massachusetts General Hospital, using resources provided by the Center for Functional Neuroimaging Technologies, P41EB015896, a P41 Biotechnology Resource Grant supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health. This work also involved the use of instrumentation supported by the NIH Shared Instrumentation Grant Program and/or High-End Instrumentation Grant Program, specifically grant numbers S10RR023452, S10RR022976, and S10RR019933. Further funding was provided by the Sigrid Juselius Foundation, the Instrumentation Research Foundation, the Finnish Medical Foundation, the Paulo Foundation, and the Academy of Finland (130557, 270352). This research was conducted within the nuclear medicine training program supported by US DOE grant DE-SC0008430.
Publisher Copyright:
© 2015, Borra et al.; licensee Springer.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - Background: Simultaneous PET/MR imaging depends on MR-derived attenuation maps (mu-maps) for accurate attenuation correction of PET data. Currently, these maps are derived from gradient-echo-based MR sequences, which are sensitive to susceptibility changes. Iron oxide magnetic nanoparticles have been used in the measurement of blood volume, tumor microvasculature, tumor-associated macrophages, and characterizing lymph nodes. Our aim in this study was to assess whether the susceptibility effects associated with iron oxide nanoparticles can potentially affect measured 18F-FDG PET standardized uptake values (SUV) through effects on MR-derived attenuation maps. Methods: The study protocol was approved by the Institutional Animal Care and Use Committee. Using a Siemens Biograph mMR PET/MR scanner, we evaluated the effects of increasing concentrations of ferumoxytol and ferumoxytol aggregates on MR-derived mu-maps using an agarose phantom. In addition, we performed a baboon experiment evaluating the effects of a single i.v. ferumoxytol dose (10 mg/kg) on the liver, spleen, and pancreas 18F-FDG SUV at baseline (ferumoxytol-naïve), within the first hour and at 1, 3, 5, and 11 weeks. Results: Phantom experiments showed mu-map artifacts starting at ferumoxytol aggregate concentrations of 10 to 20 mg/kg. The in vivo baboon data demonstrated a 53% decrease of observed 18F-FDG SUV compared to baseline within the first hour in the liver, persisting at least 11 weeks. Conclusions: A single ferumoxytol dose can affect measured SUV for at least 3 months, which should be taken into account when administrating ferumoxytol in patients needing sequential PET/MR scans. Advances in knowledge 1. Ferumoxytol aggregates, but not ferumoxytol alone, produce significant artifacts in MR-derived attenuation correction maps at approximate clinical dose levels of 10 mg/kg. 2. When performing simultaneous whole-body 18F-FDG PET/MR, a single dose of ferumoxytol can result in observed SUV decreases up to 53%, depending on the amount of ferumoxytol aggregates in the studied tissue. Implications for patient care Administration of a single, clinically relevant, dose of ferumoxytol can potentially result in changes in observed SUV for a prolonged period of time in the setting of simultaneous PET/MR. These potential changes should be considered in particular when administering ferumoxytol to patients with expected future PET/MR studies, as ferumoxytol-induced SUV changes might interfere with therapy assessment.
AB - Background: Simultaneous PET/MR imaging depends on MR-derived attenuation maps (mu-maps) for accurate attenuation correction of PET data. Currently, these maps are derived from gradient-echo-based MR sequences, which are sensitive to susceptibility changes. Iron oxide magnetic nanoparticles have been used in the measurement of blood volume, tumor microvasculature, tumor-associated macrophages, and characterizing lymph nodes. Our aim in this study was to assess whether the susceptibility effects associated with iron oxide nanoparticles can potentially affect measured 18F-FDG PET standardized uptake values (SUV) through effects on MR-derived attenuation maps. Methods: The study protocol was approved by the Institutional Animal Care and Use Committee. Using a Siemens Biograph mMR PET/MR scanner, we evaluated the effects of increasing concentrations of ferumoxytol and ferumoxytol aggregates on MR-derived mu-maps using an agarose phantom. In addition, we performed a baboon experiment evaluating the effects of a single i.v. ferumoxytol dose (10 mg/kg) on the liver, spleen, and pancreas 18F-FDG SUV at baseline (ferumoxytol-naïve), within the first hour and at 1, 3, 5, and 11 weeks. Results: Phantom experiments showed mu-map artifacts starting at ferumoxytol aggregate concentrations of 10 to 20 mg/kg. The in vivo baboon data demonstrated a 53% decrease of observed 18F-FDG SUV compared to baseline within the first hour in the liver, persisting at least 11 weeks. Conclusions: A single ferumoxytol dose can affect measured SUV for at least 3 months, which should be taken into account when administrating ferumoxytol in patients needing sequential PET/MR scans. Advances in knowledge 1. Ferumoxytol aggregates, but not ferumoxytol alone, produce significant artifacts in MR-derived attenuation correction maps at approximate clinical dose levels of 10 mg/kg. 2. When performing simultaneous whole-body 18F-FDG PET/MR, a single dose of ferumoxytol can result in observed SUV decreases up to 53%, depending on the amount of ferumoxytol aggregates in the studied tissue. Implications for patient care Administration of a single, clinically relevant, dose of ferumoxytol can potentially result in changes in observed SUV for a prolonged period of time in the setting of simultaneous PET/MR. These potential changes should be considered in particular when administering ferumoxytol to patients with expected future PET/MR studies, as ferumoxytol-induced SUV changes might interfere with therapy assessment.
KW - Attenuation correction
KW - Ferumoxytol
KW - MRI
KW - Multimodal imaging
KW - PET
KW - PET/MR
UR - http://www.scopus.com/inward/record.url?scp=84957696881&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84957696881&partnerID=8YFLogxK
U2 - 10.1186/s40658-015-0109-0
DO - 10.1186/s40658-015-0109-0
M3 - Article
AN - SCOPUS:84957696881
SN - 2197-7364
VL - 2
SP - 1
EP - 12
JO - EJNMMI Physics
JF - EJNMMI Physics
IS - 1
M1 - 6
ER -