TY - JOUR
T1 - Estimating Visual Field Mean Deviation using Optical Coherence Tomographic Nerve Fiber Layer Measurements in Glaucoma Patients
AU - Tan, Ou
AU - Greenfield, David S.
AU - Francis, Brian A.
AU - Varma, Rohit
AU - Schuman, Joel S.
AU - Huang, David
N1 - Funding Information:
NIH grants R01 EY013516, R01 EY023285, R21EY027007 and P30 EY010572, Champalimaud Foundation, and an unrestricted grant from Research to Prevent Blindness to Casey Eye Institute.
Funding Information:
Data. Data from the Advanced Imaging for Glaucoma (AIG) study were analyzed in this study. AIG was a bioengineering partnership (R01 EY013516) and multi-site longitudinal prospective clinical study sponsored by the National Eye Institute (ClinicalTrials.gov identifier: NCT01314326). The study design and baseline participant characteristics have been reported previously35, and the Manual of Procedures is publically available online (www.AIGStudy.net). The study procedures adhered to the Declaration of Helsinki, which guides studies involving human subjects. Written informed consent was obtained from all patients for the participation in the study. Proper institutional review board approvals were obtained from all participating institutions. The study was in accordance with the Health Insurance Portability and Accountability Act of 1996 (HIPAA) privacy and security regulations. This study was approved by the Institutional Review Board (IRB) of Oregon Health&Science University.
Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - To construct an optical coherence tomography (OCT) nerve fiber layer (NFL) parameter that has maximal correlation and agreement with visual field (VF) mean deviation (MD). The NFL_MD parameter in dB scale was calculated from the peripapillary NFL thickness profile nonlinear transformation and VF area-weighted averaging. From the Advanced Imaging for Glaucoma study, 245 normal, 420 pre-perimetric glaucoma (PPG), and 289 perimetric glaucoma (PG) eyes were selected. NFL_MD had significantly higher correlation (Pearson R: 0.68 vs 0.55, p < 0.001) with VF_MD than the overall NFL thickness. NFL_MD also had significantly higher sensitivity in detecting PPG (0.14 vs 0.08) and PG (0.60 vs 0.43) at the 99% specificity level. NFL_MD had better reproducibility than VF_MD (0.35 vs 0.69 dB, p < 0.001). The differences between NFL_MD and VF_MD were −0.34 ± 1.71 dB, −0.01 ± 2.08 dB and 3.54 ± 3.18 dB and 7.17 ± 2.68 dB for PPG, early PG, moderate PG, and severe PG subgroups, respectively. In summary, OCT-based NFL_MD has better correlation with VF_MD and greater diagnostic sensitivity than the average NFL thickness. It has better reproducibility than VF_MD, which may be advantageous in detecting progression. It agrees well with VF_MD in early glaucoma but underestimates damage in moderate~advanced stages.
AB - To construct an optical coherence tomography (OCT) nerve fiber layer (NFL) parameter that has maximal correlation and agreement with visual field (VF) mean deviation (MD). The NFL_MD parameter in dB scale was calculated from the peripapillary NFL thickness profile nonlinear transformation and VF area-weighted averaging. From the Advanced Imaging for Glaucoma study, 245 normal, 420 pre-perimetric glaucoma (PPG), and 289 perimetric glaucoma (PG) eyes were selected. NFL_MD had significantly higher correlation (Pearson R: 0.68 vs 0.55, p < 0.001) with VF_MD than the overall NFL thickness. NFL_MD also had significantly higher sensitivity in detecting PPG (0.14 vs 0.08) and PG (0.60 vs 0.43) at the 99% specificity level. NFL_MD had better reproducibility than VF_MD (0.35 vs 0.69 dB, p < 0.001). The differences between NFL_MD and VF_MD were −0.34 ± 1.71 dB, −0.01 ± 2.08 dB and 3.54 ± 3.18 dB and 7.17 ± 2.68 dB for PPG, early PG, moderate PG, and severe PG subgroups, respectively. In summary, OCT-based NFL_MD has better correlation with VF_MD and greater diagnostic sensitivity than the average NFL thickness. It has better reproducibility than VF_MD, which may be advantageous in detecting progression. It agrees well with VF_MD in early glaucoma but underestimates damage in moderate~advanced stages.
UR - http://www.scopus.com/inward/record.url?scp=85076167863&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076167863&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-54792-w
DO - 10.1038/s41598-019-54792-w
M3 - Article
C2 - 31811166
AN - SCOPUS:85076167863
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 18528
ER -