Abstract
The superficial dorsal horn (SDH) of the spinal cord represents the first site of integration between innocuous and noxious somatosensory stimuli. According to gate control theory, diverse populations of excitatory and inhibitory interneurons within the SDH are activated by distinct sensory afferents, and their interplay determines the net nociceptive output projecting to higher pain centers. Although specific SDH cell types are ill defined, numerous classifications schemes find that excitatory and inhibitory neurons fundamentally differ in their morphology, electrophysiology, neuropeptides, and pain-associated plasticity; yet little is known about how these neurons respond over a range of natural innocuous and noxious stimuli. To address this question, we applied an in vivo imaging approach in male mice where the genetically encoded calcium indicator GCaMP6s was expressed either in vGluT2-positive excitatory or vIAAT-positive inhibitory neurons. We found that inhibitory neurons were markedly more sensitive to innocuous touch than excitatory neurons but still responded dynamically over a wide range of noxious mechanical stimuli. Inhibitory neurons were also less sensitive to thermal stimuli than their excitatory counterparts. In a capsaicin model of acute pain sensitization, the responses of excitatory neurons were significantly potentiated to innocuous and noxious mechanical stimuli, whereas inhibitory neural responses were only depressed to noxious stimuli. These in vivo findings show that excitatory and inhibitory SDH neurons diverge considerably in their somatosensory responses and plasticity, as postulated by gate control theory.
Original language | English (US) |
---|---|
Pages (from-to) | 1958-1973 |
Number of pages | 16 |
Journal | Journal of Neuroscience |
Volume | 42 |
Issue number | 10 |
DOIs | |
State | Published - Mar 9 2022 |
Keywords
- calcium imaging
- dorsal horn
- gate control theory
- in vivo,multiphoton microscopy
- neuronal circuits
- somatosensatio
- spinal cord
ASJC Scopus subject areas
- General Neuroscience