Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays

Amin Nikoozadeh, Ömer Oralkan, Mustafa Gencel, Jung Woo Choe, Douglas N. Stephens, Alan De La Rama, Peter Chen, Feng Lin, Aaron Dentinger, Douglas Wildes, Kai Thomenius, Kalyanam Shivkumar, Aman Mahajan, Chi Hyung Seo, Matthew O'Donnell, Uyen Truong, David J. Sahn, Pierre T. Khuri-Yakub

Research output: Chapter in Book/Report/Conference proceedingConference contribution

28 Scopus citations


Atrial fibrillation, the most common type of cardiac arrhythmia, now affects more than 2.2 million adults in the US alone. Currently, electrophysiological interventions are performed under fluoroscopy guidance, which besides its harmful ionizing radiation does not provide adequate soft-tissue resolution. Intracardiac echocardiography (ICE) provides realtime anatomical information that has proven valuable in reducing the fluoroscopy time and enhancing procedural success. We developed two types of forward-looking ICE catheters using capacitive micromachined ultrasonic transducer (CMUT) technology: MicroLinear (ML) and ring catheters. The ML catheter enables real-time forward-looking 2-D imaging using a 24-element 1-D CMUT phased-array that is designed for a center frequency of 10 MHz. The ring catheter uses a 64-element ring CMUT array that is also designed for a center frequency of 10 MHz. However, this ring-shaped 2-D array enables real-time forward-looking volumetric imaging. In addition, this catheter provides a continuous central lumen that enables convenient delivery of other devices such as RF ablation catheter, EP diagnostic catheter, biopsy devices, etc. Both catheters are equipped with custom front-end IC's that are integrated with the CMUT arrays at the tip of the catheters. The integration of the IC's with the CMUT arrays was accomplished using custom flexible PCB's. We also developed several image reconstruction schemes for the ring catheter on a PC-based imaging platform from VeraSonics. We performed a variety of bench-top characterizations to validate the functionality and performance of our fully integrated CMUT arrays. Using both catheters, we demonstrated in vivo images of the heart in a porcine animal model. We have successfully prototyped the first CMUT-based ICE catheters and proven the capabilities of the CMUT technology for implementing high-frequency miniature transducer arrays with integrated electronics.

Original languageEnglish (US)
Title of host publication2010 IEEE International Ultrasonics Symposium, IUS 2010
Number of pages4
StatePublished - 2010
Event2010 IEEE International Ultrasonics Symposium, IUS 2010 - San Diego, CA, United States
Duration: Oct 11 2010Oct 14 2010

Publication series

NameProceedings - IEEE Ultrasonics Symposium
ISSN (Print)1051-0117


Other2010 IEEE International Ultrasonics Symposium, IUS 2010
Country/TerritoryUnited States
CitySan Diego, CA


  • CMUT
  • capacitive micromachined ultrasonic transducers
  • electrophysiology
  • forward-looking
  • intracardiac echocardiography
  • real-time
  • ultrasound
  • volumetric

ASJC Scopus subject areas

  • Acoustics and Ultrasonics


Dive into the research topics of 'Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays'. Together they form a unique fingerprint.

Cite this