Fully automated disease severity assessment and treatment monitoring in retinopathy of prematurity using deep learning

James M. Brown, J. Peter Campbell, Andrew Beers, Ken Chang, Kyra Donohue, Susan Ostmo, R. V.Paul Chan, Jennifer Dy, Deniz Erdogmus, Stratis Ioannidis, Michael Chiang, Jayashree Kalpathy-Cramer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

Retinopathy of prematurity (ROP) is a disease that affects premature infants, where abnormal growth of the retinal blood vessels can lead to blindness unless treated accordingly. Infants considered at risk of severe ROP are monitored for symptoms of plus disease, characterized by arterial tortuosity and venous dilation at the posterior pole, with a standard photographic definition. Disagreement among ROP experts in diagnosing plus disease has driven the development of computer-based methods that classify images based on hand-crafted features extracted from the vasculature. However, most of these approaches are semi-Automated, which are time-consuming and subject to variability. In contrast, deep learning is a fully automated approach that has shown great promise in a wide variety of domains, including medical genetics, informatics and imaging. Convolutional neural networks (CNNs) are deep networks which learn rich representations of disease features that are highly robust to variations in acquisition and image quality. In this study, we utilized a U-Net architecture to perform vessel segmentation and then a GoogLeNet to perform disease classification. The classifier was trained on 3,000 retinal images and validated on an independent test set of patients with different observed progressions and treatments. We show that our fully automated algorithm can be used to monitor the progression of plus disease over multiple patient visits with results that are consistent with the experts' consensus diagnosis. Future work will aim to further validate the method on larger cohorts of patients to assess its applicability within the clinic as a treatment monitoring tool.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2018
Subtitle of host publicationImaging Informatics for Healthcare, Research, and Applications
EditorsPo-Hao Chen, Jianguo Zhang
PublisherSPIE
ISBN (Electronic)9781510616479
DOIs
StatePublished - 2018
EventMedical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications - Houston, United States
Duration: Feb 13 2018Feb 15 2018

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10579
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications
Country/TerritoryUnited States
CityHouston
Period2/13/182/15/18

Keywords

  • Deep learning
  • Machine learning
  • Plus disease
  • Retina
  • Retinopathy of prematurity

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging
  • Biomaterials

Fingerprint

Dive into the research topics of 'Fully automated disease severity assessment and treatment monitoring in retinopathy of prematurity using deep learning'. Together they form a unique fingerprint.

Cite this