TY - GEN
T1 - Functional Doppler optical coherence tomography for cortical blood flow imaging
AU - Yu, Lingfeng
AU - Liu, Gangjun
AU - Nguyen, Elaine
AU - Choi, Bernard
AU - Chen, Zhongping
PY - 2010/12/1
Y1 - 2010/12/1
N2 - Optical methods have been widely used in basic neuroscience research to study the cerebral blood flow dynamics in order to overcome the low spatial resolution associated with magnetic resonance imaging and positron emission tomography. Although laser Doppler imaging and laser speckle imaging can map out en face cortical hemodynamics and columns, depth resolution is not available. Two-photon microscopy has been used for mapping cortical activity. However, flow measurement requires fluorescent dye injection, which can be problematic. The noninvasive and high resolution tomographic capabilities of optical coherence tomography make it a promising technique for mapping depth resolved cortical blood flow. Here, we present a functional Doppler optical coherence tomography (OCT) imaging modality for quantitative evaluation of cortical blood flow in a mouse model. Fast, repeated, Doppler OCT scans across a vessel of interest were performed to record flow dynamic information with a high temporal resolution of the cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time, thereby providing complementary temporal flow information to the spatially distributed flow information of Doppler OCT. The proposed functional Doppler OCT imaging modality can be used to diagnose vessel stenosis/blockage or monitor blood flow changes due to pharmacological agents/neuronal activities. Non-invasive in-vivo mice experiments were performed to verify the capabilities of function Doppler OCT.
AB - Optical methods have been widely used in basic neuroscience research to study the cerebral blood flow dynamics in order to overcome the low spatial resolution associated with magnetic resonance imaging and positron emission tomography. Although laser Doppler imaging and laser speckle imaging can map out en face cortical hemodynamics and columns, depth resolution is not available. Two-photon microscopy has been used for mapping cortical activity. However, flow measurement requires fluorescent dye injection, which can be problematic. The noninvasive and high resolution tomographic capabilities of optical coherence tomography make it a promising technique for mapping depth resolved cortical blood flow. Here, we present a functional Doppler optical coherence tomography (OCT) imaging modality for quantitative evaluation of cortical blood flow in a mouse model. Fast, repeated, Doppler OCT scans across a vessel of interest were performed to record flow dynamic information with a high temporal resolution of the cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time, thereby providing complementary temporal flow information to the spatially distributed flow information of Doppler OCT. The proposed functional Doppler OCT imaging modality can be used to diagnose vessel stenosis/blockage or monitor blood flow changes due to pharmacological agents/neuronal activities. Non-invasive in-vivo mice experiments were performed to verify the capabilities of function Doppler OCT.
KW - Doppler
KW - functional optical coherence tomography
KW - vessel stenosis
KW - visualization of neural activity
UR - http://www.scopus.com/inward/record.url?scp=79751519032&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79751519032&partnerID=8YFLogxK
U2 - 10.1117/12.842820
DO - 10.1117/12.842820
M3 - Conference contribution
AN - SCOPUS:79751519032
SN - 9780819479440
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Photonic Therapeutics and Diagnostics VI
T2 - Photonic Therapeutics and Diagnostics VI
Y2 - 23 January 2010 through 25 January 2010
ER -