TY - JOUR
T1 - G-Onramp
T2 - Generating genome browsers to facilitate undergraduate-driven collaborative genome annotation
AU - Sargent, Luke
AU - Liu, Yating
AU - Leung, Wilson
AU - Mortimer, Nathan T.
AU - Lopatto, David
AU - Goecks, Jeremy
AU - Elgin, Sarah C.R.
N1 - Funding Information:
This work was supported by a National Institutes of Health grant R25 GM119157 awarded to SCRE; the work on parasitoid wasps is supported by NIH grants 1R35 GM133760 and 1R03 AG063314 to NTM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Todd Schlenke for supplying parasitoid wasp genome sequence, and the GEP faculty members and their students who participated in the parasitoid wasp project during the last two years: Cindy Arrigo (New Jersey City University), Rebecca Burgess (Stevenson University), Thomas Giarla (Siena College), Rivka Glaser (Stevenson University), Shubha Govind (City College, City University of New York), Adam Haberman (University of San Diego), Christopher Jones (Moravian College), Lisa Kadlec (Wilkes University), Adam Kleinschmit (University of Dubuque), Leocadia Paliulis (Bucknell University), Srebrenka Robic (Agnes Scott College), Michael Rubin (University of Puerto Rico at Cayey), Sheryl Smith (Arcadia University), Joyce Stamm (University of Evansville), and Melanie Van Stry (Lane College).
Publisher Copyright:
Copyright: © 2020 Sargent et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/6
Y1 - 2020/6
N2 - Scientists are sequencing new genomes at an increasing rate with the goal of associating genome contents with phenotypic traits. After a new genome is sequenced and assembled, structural gene annotation is often the first step in analysis. Despite advances in computational gene prediction algorithms, most eukaryotic genomes still benefit from manual gene annotation. This requires access to good genome browsers to enable annotators to visualize and evaluate multiple lines of evidence (e.g., sequence similarity, RNA sequencing [RNA-Seq] results, gene predictions, repeats) and necessitates many volunteers to participate in the work. To address the technical barriers to creating genome browsers, the Genomics Education Partnership (GEP; https://gep.wustl.edu/) has partnered with the Galaxy Project (https://galaxyproject.org) to develop G-OnRamp (http://g-onramp.org), a web-based platform for creating UCSC Genome Browser Assembly Hubs and JBrowse genome browsers. G-OnRamp also converts a JBrowse instance into an Apollo instance for collaborative genome annotations in research and educational settings. The genome browsers produced can be transferred to the CyVerse Data Store for long-term access. G-OnRamp enables researchers to easily visualize their experimental results, educators to create Course-based Undergraduate Research Experiences (CUREs) centered on genome annotation, and students to participate in genomics research. In the process, students learn about genes/ genomes and about how to utilize large datasets. Development of G-OnRamp was guided by extensive user feedback. Sixty-five researchers/educators from >40 institutions participated through in-person workshops, which produced >20 genome browsers now available for research and education. Genome browsers generated for four parasitoid wasp species have been used in a CURE engaging students at 15 colleges and universities. Our assessment results in the classroom demonstrate that the genome browsers produced by G-OnRamp are effective tools for engaging undergraduates in research and in enabling their contributions to the scientific literature in genomics. Expansion of such genomics research/education partnerships will be beneficial to researchers, faculty, and students alike.
AB - Scientists are sequencing new genomes at an increasing rate with the goal of associating genome contents with phenotypic traits. After a new genome is sequenced and assembled, structural gene annotation is often the first step in analysis. Despite advances in computational gene prediction algorithms, most eukaryotic genomes still benefit from manual gene annotation. This requires access to good genome browsers to enable annotators to visualize and evaluate multiple lines of evidence (e.g., sequence similarity, RNA sequencing [RNA-Seq] results, gene predictions, repeats) and necessitates many volunteers to participate in the work. To address the technical barriers to creating genome browsers, the Genomics Education Partnership (GEP; https://gep.wustl.edu/) has partnered with the Galaxy Project (https://galaxyproject.org) to develop G-OnRamp (http://g-onramp.org), a web-based platform for creating UCSC Genome Browser Assembly Hubs and JBrowse genome browsers. G-OnRamp also converts a JBrowse instance into an Apollo instance for collaborative genome annotations in research and educational settings. The genome browsers produced can be transferred to the CyVerse Data Store for long-term access. G-OnRamp enables researchers to easily visualize their experimental results, educators to create Course-based Undergraduate Research Experiences (CUREs) centered on genome annotation, and students to participate in genomics research. In the process, students learn about genes/ genomes and about how to utilize large datasets. Development of G-OnRamp was guided by extensive user feedback. Sixty-five researchers/educators from >40 institutions participated through in-person workshops, which produced >20 genome browsers now available for research and education. Genome browsers generated for four parasitoid wasp species have been used in a CURE engaging students at 15 colleges and universities. Our assessment results in the classroom demonstrate that the genome browsers produced by G-OnRamp are effective tools for engaging undergraduates in research and in enabling their contributions to the scientific literature in genomics. Expansion of such genomics research/education partnerships will be beneficial to researchers, faculty, and students alike.
UR - http://www.scopus.com/inward/record.url?scp=85085987764&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85085987764&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1007863
DO - 10.1371/journal.pcbi.1007863
M3 - Article
C2 - 32497138
AN - SCOPUS:85085987764
SN - 1553-734X
VL - 16
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 6
M1 - 1007863
ER -