Generative adversarial networks in ophthalmology: What are these and how can they be used?

Zhaoran Wang, Gilbert Lim, Wei Yan Ng, Pearse A. Keane, J. Peter Campbell, Gavin Siew Wei Tan, Leopold Schmetterer, Tien Yin Wong, Yong Liu, Daniel Shu Wei Ting

Research output: Contribution to journalReview articlepeer-review

6 Scopus citations


Purpose of reviewThe development of deep learning (DL) systems requires a large amount of data, which may be limited by costs, protection of patient information and low prevalence of some conditions. Recent developments in artificial intelligence techniques have provided an innovative alternative to this challenge via the synthesis of biomedical images within a DL framework known as generative adversarial networks (GANs). This paper aims to introduce how GANs can be deployed for image synthesis in ophthalmology and to discuss the potential applications of GANs-produced images.Recent findingsImage synthesis is the most relevant function of GANs to the medical field, and it has been widely used for generating 'new' medical images of various modalities. In ophthalmology, GANs have mainly been utilized for augmenting classification and predictive tasks, by synthesizing fundus images and optical coherence tomography images with and without pathologies such as age-related macular degeneration and diabetic retinopathy. Despite their ability to generate high-resolution images, the development of GANs remains data intensive, and there is a lack of consensus on how best to evaluate the outputs produced by GANs.SummaryAlthough the problem of artificial biomedical data generation is of great interest, image synthesis by GANs represents an innovation with yet unclear relevance for ophthalmology.

Original languageEnglish (US)
Pages (from-to)459-467
Number of pages9
JournalCurrent opinion in ophthalmology
Issue number5
StatePublished - Sep 1 2021


  • artificial intelligence
  • deep learning
  • generative adversarial networks
  • medical image synthesis
  • ophthalmology

ASJC Scopus subject areas

  • Ophthalmology


Dive into the research topics of 'Generative adversarial networks in ophthalmology: What are these and how can they be used?'. Together they form a unique fingerprint.

Cite this