Glomerular filtrate proteins in acute cardiorenal syndrome

Rumie Wakasaki, Katsuyuki Matsushita, Kirsti Golgotiu, Sharon Anderson, Mahaba B. Eiwaz, Daniel J. Orton, Sang Jun Han, H. Thomas Lee, Richard D. Smith, Karin D. Rodland, Paul D. Piehowski, Michael P. Hutchens

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Acute cardiorenal syndrome (CRS-1) is a morbid complication of acute cardiovascular disease. Heart-to-kidney signals transmitted by "cardiorenal connectors" have been postulated, but investigation into CRS-1 has been limited by technical limitations and a paucity of models. To address these limitations, we developed a translational model of CRS-1, cardiac arrest and cardiopulmonary resuscitation (CA/CPR), and now report findings from nanoscale mass spectrometry proteomic exploration of glomerular filtrate 2 hours after CA/CPR or sham procedure. Filtrate acquisition was confirmed by imaging, molecular weight and charge distribution, and exclusion of protein specific to surrounding cells. Filtration of proteins specific to the heart was detected following CA/CPR and confirmed with mass spectrometry performed using urine collections from mice with deficient tubular endocytosis. Cardiac LIM protein was a CA/CPR-specific filtrate component. Cardiac arrest induced plasma release of cardiac LIM protein in mice and critically ill human cardiac arrest survivors, and administration of recombinant cardiac LIM protein to mice altered renal function. These findings demonstrate that glomerular filtrate is accessible to nanoscale proteomics and elucidate the population of proteins filtered 2 hours after CA/CPR. The identification of cardiac-specific proteins in renal filtrate suggests a novel signaling mechanism in CRS-1. We expect these findings to advance understanding of CRS-1.

Original languageEnglish (US)
JournalJCI Insight
Issue number4
StatePublished - Feb 21 2019


  • Cardiology
  • Cardiovascular disease
  • Nephrology
  • Protein traffic
  • Proteomics

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'Glomerular filtrate proteins in acute cardiorenal syndrome'. Together they form a unique fingerprint.

Cite this