Human trabecular meshwork organ culture: Morphology and glycosaminoglycan synthesis

T. S. Acott, P. D. Kingsley, J. R. Samples, E. M. Van Buskirk

Research output: Contribution to journalArticlepeer-review

92 Scopus citations


Human corneoscleral explants were maintained for several weeks in defined, serum-free media. Trabecular cell vitality, as judged by vital stain exclusion, is high for at least one month. Trabecular ultrastructure, as compared to that of fresh eyes, first shows minor cellular and extracellular matrix degradation after 3 weeks in culture. The biosynthetic profiles of trabecular glycosaminoglycans (GAGs) change significantly by 3 weeks in culture. Eyes that are stored at 5°C for up to 48 hr postmortem exhibit changes in trabecular ultrastructure and in GAG profiles; both characteristics return to normal by 7 days in culture. The incorporation pattern of 35S-sulfate and 3H-glucosamine into the GAGs of the trabecular meshwork (TM) is distinct from corneal or scleral incorporation. The relative incorporation of 3H-glucosamine into trabecular GAGs, as determined by sequential enzymatic degradation, is: 22.3% hyaluronic acid (HA), 27.9% chondroitin sulfate (CS), 21.3% dermatan sulfate (DS), 5.9% keratan sulfate (KS), 17.7% heparan sulfate (HS) and 4.9% unidentified material. The relative incorporation of 35S-sulfate into trabecular GAGs: 0% HA, 32.9% CS, 34.8% DS, 7.7% KS, 13.8% HS and 11.1% into unidentified material. This profile is in good agreement with the profile that was previously obtained for human and nonhuman primate meshworks prior to culture. We conclude that corneoscleral organ culture is a useful tool for extracellular matrix studies within a time window from 7 to at least 14 days in culture.

Original languageEnglish (US)
Pages (from-to)90-100
Number of pages11
JournalInvestigative Ophthalmology and Visual Science
Issue number1
StatePublished - 1988

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Human trabecular meshwork organ culture: Morphology and glycosaminoglycan synthesis'. Together they form a unique fingerprint.

Cite this