Improved interpretability for computer-aided severity assessment of retinopathy of prematurity

Mara Graziani, James M. Brown, Vincent Andrearczyk, Veysi Yildiz, J. Peter Campbell, Deniz Erdogmus, Stratis Ioannidis, Michael F. Chiang, Jayashree Kalpathy-Cramer, Henning Müller

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations


Computer-aided diagnosis tools for Retinopathy of Prematurity (ROP) base their decisions on handcrafted retinal features that highly correlate with expert diagnoses, such as arterial and venous curvature, tortuosity and dilation. Deep learning leads to performance comparable to those of expert physicians, albeit not ensuring that the same clinical factors are learned in the deep representations. In this paper, we investigate the relationship between the handcrafted and the deep learning features in the context of ROP diagnosis. Average statistics on the handcrafted features for each input image were expressed as retinal concept measures. Three disease severity grades, i.e. normal, pre-plus and plus, were classified by a deep convolutional neural network. Regression Concept Vectors (RCV) were computed in the network feature space for each retinal concept measure. Relevant concept measures were identified by bidirectional relevance scores for the normal and plus classes. Results show that the curvature, diameter and tortuosity of the segmented vessels are indeed relevant to the classification. Among the potential applications of this method, the analysis of borderline cases between the classes and of network faults, in particular, can be used to improve the performance.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2019
Subtitle of host publicationComputer-Aided Diagnosis
EditorsKensaku Mori, Horst K. Hahn
ISBN (Electronic)9781510625471
StatePublished - 2019
EventMedical Imaging 2019: Computer-Aided Diagnosis - San Diego, United States
Duration: Feb 17 2019Feb 20 2019

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


ConferenceMedical Imaging 2019: Computer-Aided Diagnosis
Country/TerritoryUnited States
CitySan Diego


  • Deep learning
  • Interpretability
  • Machine learning
  • Plus disease
  • Retinopathy

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging
  • Biomaterials


Dive into the research topics of 'Improved interpretability for computer-aided severity assessment of retinopathy of prematurity'. Together they form a unique fingerprint.

Cite this