TY - JOUR
T1 - Ketamine Alters Hippocampal Cell Proliferation and Improves Learning in Mice after Traumatic Brain Injury
AU - Peters, Austin J.
AU - Villasana, Laura E.
AU - Schnell, Eric
N1 - Funding Information:
Primary funding for this project was provided by a Foundation for Anesthesia Education and Research (Schaumburg, Illinois) Research Fellowship Grant (to Dr. Peters). Additional funding was provided by a BIRCWH K12 award made possible through the Eunice Kennedy Shriver National Institute of Child Health and Human Development (Bethesda, Maryland) and the Office of Research on Women's Health (Bethesda, Maryland; grant No. K12 HD 043488; to Dr. Villasana), a Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development (Washington, D.C.), Biomedical Laboratory Research and Development (Washington, D.C.) CDA-2 Award 005-10S (to Dr. Schnell), a Department of Veterans Affairs Merit Review Award I01-BX002949 (to Dr. Schnell), and Oregon Health and Science University (Portland, Oregon) Anesthesiology and Perioperative Medicine departmental funds. Supplementary equipment and developmental funds were provided by the Oregon Clinical and Translational Research Institute (Portland, Oregon) grant No. TL1TR000129 and National Institute for Neurological Disorders and Stroke (Bethesda, Maryland) grant No. P30 NS061800.
Funding Information:
Primary funding for this project was provided by a Foundation for Anesthesia Education and Research (Schaum-burg, Illinois) Research Fellowship Grant (to Dr. Peters). Additional funding was provided by a BIRCWH K12 award made possible through the Eunice Kennedy Shriver National Institute of Child Health and Human Development (Bethesda, Maryland) and the Office of Research on Women’s Health (Bethesda, Maryland; grant No. K12 HD 043488; to Dr. Villasana), a Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development (Washington, D.C.), Biomedical Laboratory Research and Development (Washington, D.C.) CDA-2 Award 005-10S (to Dr. Schnell), a Department of Veterans Affairs Merit Review Award I01-BX002949 (to Dr. Schnell), and Oregon Health and Science University (Portland, Oregon) Anesthesiology and Perioperative Medicine departmental funds. Supplementary equipment and developmental funds were provided by the Oregon Clinical and Translational Research Institute (Portland, Oregon) grant No. TL1TR000129 and National Institute for Neurological Disorders and Stroke (Bethesda, Maryland) grant No. P30 NS061800.
Publisher Copyright:
Copyright © 2018, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc. All Rights Reserved.
PY - 2018/8
Y1 - 2018/8
N2 - Background: Traumatic brain injury induces cellular proliferation in the hippocampus, which generates new neurons and glial cells during recovery. This process is regulated by N-methyl-D-aspartate-type glutamate receptors, which are inhibited by ketamine. The authors hypothesized that ketamine treatment after traumatic brain injury would reduce hippocampal cell proliferation, leading to worse behavioral outcomes in mice. Methods: Traumatic brain injury was induced in mice using a controlled cortical impact injury, after which mice (N = 118) received either ketamine or vehicle systemically for 1 week. The authors utilized immunohistochemical assays to evaluate neuronal, astroglial, and microglial cell proliferation and survival 3 days, 2 weeks, and 6 weeks postintervention. The Morris water maze reversal task was used to assess cognitive recovery. Results: Ketamine dramatically increased microglial proliferation in the granule cell layer of the hippocampus 3 days after injury (injury + vehicle, 2,800 ± 2,700 cells/mm3, n = 4; injury + ketamine, 11,200 ± 6,600 cells/mm3, n = 6; P = 0.012). Ketamine treatment also prevented the production of astrocytes 2 weeks after injury (sham + vehicle, 2,400 ± 3,200 cells/mm3, n = 13; injury + vehicle, 10,500 ± 11,300 cells/mm3, n = 12; P = 0.013 vs. sham + vehicle; sham + ketamine, 3,500 ± 4,900 cells/mm3, n = 14; injury + ketamine, 4,800 ± 3,000 cells/mm3, n = 13; P = 0.955 vs. sham + ketamine). Independent of injury, ketamine temporarily reduced neurogenesis (vehicle-exposed, 105,100 ± 66,700, cells/mm3, n = 25; ketamine-exposed, 74,300 ± 29,200 cells/mm3, n = 27; P = 0.031). Ketamine administration improved performance in the Morris water maze reversal test after injury, but had no effect on performance in sham-treated mice. Conclusions: Ketamine alters hippocampal cell proliferation after traumatic brain injury. Surprisingly, these changes were associated with improvement in a neurogenesis-related behavioral recall task, suggesting a possible benefit from ketamine administration after traumatic brain injury in mice. Future studies are needed to determine generalizability and mechanism.
AB - Background: Traumatic brain injury induces cellular proliferation in the hippocampus, which generates new neurons and glial cells during recovery. This process is regulated by N-methyl-D-aspartate-type glutamate receptors, which are inhibited by ketamine. The authors hypothesized that ketamine treatment after traumatic brain injury would reduce hippocampal cell proliferation, leading to worse behavioral outcomes in mice. Methods: Traumatic brain injury was induced in mice using a controlled cortical impact injury, after which mice (N = 118) received either ketamine or vehicle systemically for 1 week. The authors utilized immunohistochemical assays to evaluate neuronal, astroglial, and microglial cell proliferation and survival 3 days, 2 weeks, and 6 weeks postintervention. The Morris water maze reversal task was used to assess cognitive recovery. Results: Ketamine dramatically increased microglial proliferation in the granule cell layer of the hippocampus 3 days after injury (injury + vehicle, 2,800 ± 2,700 cells/mm3, n = 4; injury + ketamine, 11,200 ± 6,600 cells/mm3, n = 6; P = 0.012). Ketamine treatment also prevented the production of astrocytes 2 weeks after injury (sham + vehicle, 2,400 ± 3,200 cells/mm3, n = 13; injury + vehicle, 10,500 ± 11,300 cells/mm3, n = 12; P = 0.013 vs. sham + vehicle; sham + ketamine, 3,500 ± 4,900 cells/mm3, n = 14; injury + ketamine, 4,800 ± 3,000 cells/mm3, n = 13; P = 0.955 vs. sham + ketamine). Independent of injury, ketamine temporarily reduced neurogenesis (vehicle-exposed, 105,100 ± 66,700, cells/mm3, n = 25; ketamine-exposed, 74,300 ± 29,200 cells/mm3, n = 27; P = 0.031). Ketamine administration improved performance in the Morris water maze reversal test after injury, but had no effect on performance in sham-treated mice. Conclusions: Ketamine alters hippocampal cell proliferation after traumatic brain injury. Surprisingly, these changes were associated with improvement in a neurogenesis-related behavioral recall task, suggesting a possible benefit from ketamine administration after traumatic brain injury in mice. Future studies are needed to determine generalizability and mechanism.
UR - http://www.scopus.com/inward/record.url?scp=85056519285&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056519285&partnerID=8YFLogxK
U2 - 10.1097/ALN.0000000000002197
DO - 10.1097/ALN.0000000000002197
M3 - Article
C2 - 29734230
AN - SCOPUS:85056519285
SN - 0003-3022
VL - 129
SP - 1278
EP - 1295
JO - Anesthesiology
JF - Anesthesiology
IS - 2
ER -