Kyphosis and paraspinal muscle composition in older men: A cross-sectional study for the osteoporotic fractures in men (MrOS) research group

Wendy B. Katzman, Dana Miller-Martinez, Lynn M. Marshall, Nancy E. Lane, Deborah M. Kado

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Background: The prevalence of hyperkyphosis is increased in older men; however, risk factors other than age and vertebral fractures are not well established. We previously reported that poor paraspinal muscle composition contributes to more severe kyphosis in a cohort of both older men and women. Methods. To specifically evaluate this association in older men, we conducted a cross-sectional study to evaluate the association of paraspinal muscle composition and degree of thoracic kyphosis in an analytic cohort of 475 randomly selected participants from the Osteoporotic Fractures in Men (MrOS) study with baseline abdominal quantitative computed tomography (QCT) scans and plain thoracic radiographs. Baseline abdominal QCT scans were used to obtain abdominal body composition measurements of paraspinal muscle and adipose tissue distribution. Supine lateral spine radiographs were used to measure Cobb angle of kyphosis. We examined the linear association of muscle volume, fat volume and kyphosis using loess plots. Multivariate linear models were used to investigate the association between muscle and kyphosis using total muscle volume, as well as individual components of the total muscle volume, including adipose and muscle compartments alone, controlling for age, height, vertebral fractures, and total hip bone mineral density (BMD). We examined these associations among those with no prevalent vertebral fracture and those with BMI < 30 kg/m§ssup§2§esup§. Results: Among men in the analytic cohort, means (SD) were 74 (SD = 5.9) years for age, and 37.5 (SD = 11.9) degrees for Cobb angle of kyphosis. Men in the lowest tertile of total paraspinal muscle volume had greater mean Cobb angle than men in the highest tertile, although test of linear trend across tertiles did not reach statistical significance. Neither lower paraspinal skeletal muscle volume (p-trend = 0.08), or IMAT (p-trend = 0.96) was associated with greater kyphosis. Results were similar among those with no prevalent vertebral fractures. However, among men with BMI < 30 kg/m§ssup§2§esup§, those in the lowest tertile of paraspinal muscle volume had greater adjusted mean kyphosis (40.0, 95% CI: 37.8 - 42.1) compared to the highest tertile (36.3, 95% CI: 34.2 - 38.4). Conclusions: These results suggest that differences in body composition may potentially influence kyphosis.

Original languageEnglish (US)
Article number19
JournalBMC musculoskeletal disorders
Volume15
Issue number1
DOIs
StatePublished - Jan 16 2014

Keywords

  • BMI
  • Hyperkyphosis
  • Kyphosis
  • Spinal muscle composition
  • Vertebral fractures

ASJC Scopus subject areas

  • Rheumatology
  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Kyphosis and paraspinal muscle composition in older men: A cross-sectional study for the osteoporotic fractures in men (MrOS) research group'. Together they form a unique fingerprint.

Cite this