Learning users' interests by unobtrusively observing their normal behavior

Jeremy Goecks, Jude Shavlik

Research output: Contribution to conferencePaperpeer-review

127 Scopus citations


For intelligent interfaces attempting to learn a user's interests, the cost of obtaining labeled training instances is prohibitive because the user must directly label each training instance, and few users are willing to do so. We present an approach that circumvents the need for human-labeled pages. Instead, we learn `surrogate' tasks where the desired output is easily measured, such as the number of hyperlinks clicked on a page or the amount of scrolling performed. Our assumption is that these outputs will highly correlate with the user's interests. In other words, by unobtrusively `observing' the user's behavior we are able to learn functions of value. For example, an intelligent browser could silently observe the user's browsing behavior during the day, then use these training examples to learn such functions and gather, during the middle of the night, pages that are likely to be of interest to the user. Previous work has focused on learning a user profile by passively observing the hyperlinks clicked on and those passed over. We extend this approach by measuring user mouse and scrolling activity in addition to user browsing activity. We present empirical results that demonstrate our agent can accurately predict some easily measured aspects of one's use of his or her browser.

Original languageEnglish (US)
Number of pages4
StatePublished - 2000
Externally publishedYes
EventIUI-2000: International Conference on Intelligent User Interfaces - New Orleans, LA, USA
Duration: Jan 9 2000Jan 12 2000


OtherIUI-2000: International Conference on Intelligent User Interfaces
CityNew Orleans, LA, USA

ASJC Scopus subject areas

  • Computer Science(all)


Dive into the research topics of 'Learning users' interests by unobtrusively observing their normal behavior'. Together they form a unique fingerprint.

Cite this