Limbic circuitry activation in ethanol withdrawal is regulated by a chromosome 1 locus

Kari J. Buck, Gang Chen, Laura B. Kozell

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Physiological dependence and associated withdrawal episodes are thought to constitute a motivational force sustaining alcohol use/abuse and contributing to relapse in alcoholics. Although no animal model exactly duplicates alcoholism, models for specific factors, including the withdrawal syndrome, are useful for identifying potential genetic and neural determinants of liability in humans. We previously identified highly significant quantitative trait loci (QTLs) with large effects on predisposition to withdrawal after chronic and acute alcohol exposure in mice and mapped these loci to the same region of chromosome 1 (Alcdp1 and Alcw1, respectively). The present studies utilize a novel Alcdp1/Alcw1 congenic model (in which an interval spanning Alcdp1 and Alcw1 from the C57BL/6J donor strain [build GRCm38 150.3–174.6 Mb] has been introgressed onto a uniform inbred DBA/2J genetic background) known to demonstrate significantly less severe chronic and acute withdrawal compared to appropriate background strain animals. Here, using c-Fos induction as a high-resolution marker of neuronal activation, we report that male Alcdp1/Alcw1 congenic animals demonstrate significantly less alcohol withdrawal-associated neural activation compared to appropriate background strain animals in the prelimbic and cingulate cortices of the prefrontal cortex as well as discrete regions of the extended amygdala (i.e., basolateral) and extended basal ganglia (i.e., dorsolateral striatum, and caudal substantia nigra pars reticulata). These studies are the first to begin to elucidate circuitry by which this confirmed addiction-relevant QTL could influence behavior. This circuitry overlaps limbic circuitry involved in stress, providing additional mechanistic information. Alcdp1/Alcw1 maps to a region syntenic with human chromosome 1q, where multiple studies find significant associations with risk for alcoholism.

Original languageEnglish (US)
Pages (from-to)153-160
Number of pages8
StatePublished - Feb 1 2017


  • Amygdala
  • Ethanol
  • Limbic
  • Withdrawal
  • c-Fos

ASJC Scopus subject areas

  • Health(social science)
  • Biochemistry
  • Toxicology
  • Neurology
  • Behavioral Neuroscience


Dive into the research topics of 'Limbic circuitry activation in ethanol withdrawal is regulated by a chromosome 1 locus'. Together they form a unique fingerprint.

Cite this