Localized hypoxia within the subgranular zone determines the early survival of newborn hippocampal granule cells

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

The majority of adult hippocampal newborn cells die during early differentiation from intermediate progenitors (IPCs) to immature neurons. Neural stem cells in vivo are located in a relative hypoxic environment, and hypoxia enhances their survival, proliferation and stemness in vitro. Thus, we hypothesized that migration of IPCs away from hypoxic zones within the SGZ might result in oxidative damage, thus triggering cell death. Hypoxic niches were observed along the SGZ, composed of adult NSCs and early IPCs, and oxidative byproducts were present in adjacent late IPCs and neuroblasts. Stabilizing hypoxia inducible factor-1a with dimethyloxallyl glycine increased early survival, but not proliferation or differentiation, in neurospheres in vitro and in newly born SGZ cells in vivo. Rescue experiments in Baxfl/flmutants supported these results. We propose that localized hypoxia within the SGZ contributes to the neurogenic microenvironment and determines the early, activity-independent survival of adult hippocampal newborn cells.

Original languageEnglish (US)
Article numbere08722
JournaleLife
Volume4
Issue numberOCTOBER2015
DOIs
StatePublished - Oct 17 2015

ASJC Scopus subject areas

  • General Immunology and Microbiology
  • General Biochemistry, Genetics and Molecular Biology
  • General Neuroscience

Fingerprint

Dive into the research topics of 'Localized hypoxia within the subgranular zone determines the early survival of newborn hippocampal granule cells'. Together they form a unique fingerprint.

Cite this