Melanin granule model for laser-induced thermal damage in the retina

C. R. Thompson, B. S. Gerstman, S. L. Jacques, M. E. Rogers

Research output: Contribution to journalArticlepeer-review

88 Scopus citations


An analytical model for thermal damage of retinal tissue due to absorption of laser energy by finite-sized melanin granules is developed. Since melanin is the primary absorber of visible and near-IR light in the skin and in the retina, bulk heating of tissue can be determined by superposition of individual melanin granule effects. Granules are modeled as absorbing spheres surrounded by an infinite medium of water. Analytical solutions to the heat equation result in computations that are quick and accurate. Moreover, the model does not rely on symmetric beam profiles, and so arbitrary images can be studied. The important contribution of this model is to provide a more accurate biological description of submillisecond pulse exposures than previous retinal models, while achieving agreement for longer pulses. This model can also be naturally extended into the sub-microsecond domain by including vaporization as a damage mechanism. It therefore represents the beginning of a model which can be applied across the entire pulse duration domain.

Original languageEnglish (US)
Pages (from-to)513-553
Number of pages41
JournalBulletin of Mathematical Biology
Issue number3
StatePublished - 1996
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience
  • Immunology
  • General Mathematics
  • General Biochemistry, Genetics and Molecular Biology
  • General Environmental Science
  • Pharmacology
  • General Agricultural and Biological Sciences
  • Computational Theory and Mathematics


Dive into the research topics of 'Melanin granule model for laser-induced thermal damage in the retina'. Together they form a unique fingerprint.

Cite this