Modified INOvent for delivery of inhaled nitric oxide during cardiac MRI

Ganesh P. Devendra, Stephen A. Hart, Yuli Y. Kim, Randy M. Setser, Scott D. Flamm, Richard A. Krasuski

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Background: The aim of this study was to assess the feasibility of delivering NO through a modified system to allow clearance of the magnetic field and thus compatibility with cardiac magnetic resonance (CMR). Nitric oxide (NO) is an inhalational, selective pulmonary vasodilator with a wide range of applications in a variety of disease states, including diseases that affect the right ventricle. Accurate assessment of dynamic changes in right ventricular function necessitates CMR; however, delivery of NO is only possible using equipment that is not magnetic resonance imaging (MRI) compatible (INOvent delivery system, Ohmeda, Inc., Madison, WI, USA). Methods: The INOvent delivery system was modified by using 35 ft. of standard oxygen tubing to allow NO delivery through an electrical conduit and into the MRI suite. The concentrations of oxygen (O 2), nitrogen dioxide (a harmful byproduct, NO 2) and NO were measured in triplicate using the built-in electrochemical analyzer on the INOvent. After confirmation of safety, the system was used to administer drug to a patient x, and dynamic MRI measurements were performed. Results: When the standard INOvent was set to administer 40 ppm of NO, the mean/standard deviation of gas delivered was as follows: NO: 42/0 ppm; NO 2: 0.3/0.1 ppm; and O 2: 93/0 ppm. In comparison, the gas delivery of the modified INOvent was follows: NO: 41/0 ppm; NO 2: 0.5/0 ppm; and O 2: 93.7/0.6 ppm. During administration to an index patient with severe pulmonic insufficiency (PI), a measurable reduction in PI was observed by CMR. Conclusions: Nitric oxide can be administered through 35 ft. of standard oxygen tubing without significantly affecting dose delivery. This technique has potential application in patients with right-sided structural heart disease for determination of dynamic physiological changes.

Original languageEnglish (US)
Pages (from-to)1145-1149
Number of pages5
JournalMagnetic Resonance Imaging
Volume29
Issue number8
DOIs
StatePublished - Oct 2011
Externally publishedYes

Keywords

  • Cardiac MRI
  • Inhaled nitric oxide
  • Modified INOvent

ASJC Scopus subject areas

  • Biophysics
  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Modified INOvent for delivery of inhaled nitric oxide during cardiac MRI'. Together they form a unique fingerprint.

Cite this