TY - JOUR
T1 - Neuronal selectivity to complex vocalization features emerges in the superficial layers of primary auditory cortex
AU - Montes-Louridoa, Pilar
AU - Kar, Manaswini
AU - David, Stephen V.
AU - Sadagopan, Srivatsun
N1 - Publisher Copyright:
© 2021 Montes-Lourido et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/6
Y1 - 2021/6
N2 - Early in auditory processing, neural responses faithfully reflect acoustic input. At higher stages of auditory processing, however, neurons become selective for particular call types, eventually leading to specialized regions of cortex that preferentially process calls at the highest auditory processing stages. We previously proposed that an intermediate step in how nonselective responses are transformed into call-selective responses is the detection of informative call features. But how neural selectivity for informative call features emerges from nonselective inputs, whether feature selectivity gradually emerges over the processing hierarchy, and how stimulus information is represented in nonselective and feature-selective populations remain open question. In this study, using unanesthetized guinea pigs (GPs), a highly vocal and social rodent, as an animal model, we characterized the neural representation of calls in 3 auditory processing stages-the thalamus (ventral medial geniculate body (vMGB)), and thalamorecipient (L4) and superficial layers (L2/3) of primary auditory cortex (A1). We found that neurons in vMGB and A1 L4 did not exhibit call-selective responses and responded throughout the call durations. However, A1 L2/3 neurons showed high call selectivity with about a third of neurons responding to only 1 or 2 call types. These A1 L2/3 neurons only responded to restricted portions of calls suggesting that they were highly selective for call features. Receptive fields of these A1 L2/3 neurons showed complex spectrotemporal structures that could underlie their high call feature selectivity. Information theoretic analysis revealed that in A1 L4, stimulus information was distributed over the population and was spread out over the call durations. In contrast, in A1 L2/3, individual neurons showed brief bursts of high stimulus-specific information and conveyed high levels of information per spike. These data demonstrate that a transformation in the neural representation of calls occurs between A1 L4 and A1 L2/3, leading to the emergence of a feature-based representation of calls in A1 L2/3. Our data thus suggest that observed cortical specializations for call processing emerge in A1 and set the stage for further mechanistic studies.
AB - Early in auditory processing, neural responses faithfully reflect acoustic input. At higher stages of auditory processing, however, neurons become selective for particular call types, eventually leading to specialized regions of cortex that preferentially process calls at the highest auditory processing stages. We previously proposed that an intermediate step in how nonselective responses are transformed into call-selective responses is the detection of informative call features. But how neural selectivity for informative call features emerges from nonselective inputs, whether feature selectivity gradually emerges over the processing hierarchy, and how stimulus information is represented in nonselective and feature-selective populations remain open question. In this study, using unanesthetized guinea pigs (GPs), a highly vocal and social rodent, as an animal model, we characterized the neural representation of calls in 3 auditory processing stages-the thalamus (ventral medial geniculate body (vMGB)), and thalamorecipient (L4) and superficial layers (L2/3) of primary auditory cortex (A1). We found that neurons in vMGB and A1 L4 did not exhibit call-selective responses and responded throughout the call durations. However, A1 L2/3 neurons showed high call selectivity with about a third of neurons responding to only 1 or 2 call types. These A1 L2/3 neurons only responded to restricted portions of calls suggesting that they were highly selective for call features. Receptive fields of these A1 L2/3 neurons showed complex spectrotemporal structures that could underlie their high call feature selectivity. Information theoretic analysis revealed that in A1 L4, stimulus information was distributed over the population and was spread out over the call durations. In contrast, in A1 L2/3, individual neurons showed brief bursts of high stimulus-specific information and conveyed high levels of information per spike. These data demonstrate that a transformation in the neural representation of calls occurs between A1 L4 and A1 L2/3, leading to the emergence of a feature-based representation of calls in A1 L2/3. Our data thus suggest that observed cortical specializations for call processing emerge in A1 and set the stage for further mechanistic studies.
UR - http://www.scopus.com/inward/record.url?scp=85108154324&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108154324&partnerID=8YFLogxK
U2 - 10.1371/journal.pbio.3001299
DO - 10.1371/journal.pbio.3001299
M3 - Article
C2 - 34133413
AN - SCOPUS:85108154324
SN - 1544-9173
VL - 19
JO - PLoS Biology
JF - PLoS Biology
IS - 6
M1 - e3001299
ER -