TY - JOUR
T1 - Oocyte age and nuclear donor cell type affect the technical efficiency of somatic cloning in rabbits
AU - Cervera, Rita P.
AU - García-Ximénez, Fernando
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2003/5
Y1 - 2003/5
N2 - The present study in rabbits compared, in the first experiment, the effect of two commonly used oocyte ages, 13 h and 17 h after ovulation induction treatment, on the technical efficiency of somatic nuclear transfer steps, using fresh cumulus cells as nuclear donors. Recently ovulated metaphase II oocytes (13 h) showed higher fusion (13 h: 83% vs 17 h: 67%, p < 0.05) and in vitro development rates than in vivo slightly aged metaphase II oocytes (morula, 13 h: 74% vs 17 h: 25%, p < 0.05; blastocyst, 13 h: 16% vs 17 h: 8%; p < 0.05). In contrast, activation rate was higher in the 17 h group (13 h: 45% vs 17 h: 67%; p < 0.05). In a second experiment, using recently ovulated oocytes (13 h) as recipients, two donor cell types (from primary cultures of either cumulus cells or fetal fibroblasts) were tested to evaluate their effects on the efficiencies of the different technical steps of somatic nuclear transfer procedure. A better fusion rate was obtained when fetal fibroblasts were used as nuclear donors (cumulus cells: 45% vs fetal fibroblasts: 67%, p < 0.05). No statistically significant differences were detected in cleavage rate regardless of the cell type used (cumulus cells: 44% vs fetal fibroblasts: 60%, p > 0.05). However, in vitro development to morula (cumulus cells: 41% vs fetal fibroblasts: 14%, p < 0.05) and to blastocyst stage (cumulus cells: 27% vs fetal fibroblasts: 3%, p < 0.05) were different between cell types.
AB - The present study in rabbits compared, in the first experiment, the effect of two commonly used oocyte ages, 13 h and 17 h after ovulation induction treatment, on the technical efficiency of somatic nuclear transfer steps, using fresh cumulus cells as nuclear donors. Recently ovulated metaphase II oocytes (13 h) showed higher fusion (13 h: 83% vs 17 h: 67%, p < 0.05) and in vitro development rates than in vivo slightly aged metaphase II oocytes (morula, 13 h: 74% vs 17 h: 25%, p < 0.05; blastocyst, 13 h: 16% vs 17 h: 8%; p < 0.05). In contrast, activation rate was higher in the 17 h group (13 h: 45% vs 17 h: 67%; p < 0.05). In a second experiment, using recently ovulated oocytes (13 h) as recipients, two donor cell types (from primary cultures of either cumulus cells or fetal fibroblasts) were tested to evaluate their effects on the efficiencies of the different technical steps of somatic nuclear transfer procedure. A better fusion rate was obtained when fetal fibroblasts were used as nuclear donors (cumulus cells: 45% vs fetal fibroblasts: 67%, p < 0.05). No statistically significant differences were detected in cleavage rate regardless of the cell type used (cumulus cells: 44% vs fetal fibroblasts: 60%, p > 0.05). However, in vitro development to morula (cumulus cells: 41% vs fetal fibroblasts: 14%, p < 0.05) and to blastocyst stage (cumulus cells: 27% vs fetal fibroblasts: 3%, p < 0.05) were different between cell types.
KW - Cumulus cells
KW - Fetal fibroblasts
KW - Oocyte ageing
KW - Rabbit
KW - Somatic nuclear transfer
UR - http://www.scopus.com/inward/record.url?scp=1542494319&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1542494319&partnerID=8YFLogxK
U2 - 10.1017/S0967199403002181
DO - 10.1017/S0967199403002181
M3 - Article
C2 - 12828414
AN - SCOPUS:1542494319
SN - 0967-1994
VL - 11
SP - 151
EP - 158
JO - Zygote
JF - Zygote
IS - 2
ER -