Optogenetic evidence for a direct circuit linking nociceptive transmission through the parabrachial complex with pain-modulating neurons of the rostral ventromedial medulla (RVM)

Qi Liang Chen, Zachary Roeder, Ming Hua Li, Yang Miao Zhang, Susan L. Ingram, Mary M. Heinricher

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

The parabrachial complex (PB) is a functionally and anatomically complex structure involved in a range of homeostatic and sensory functions, including nociceptive transmission. There is also evidence that PB can engage descending pain-modulating systems, the best characterized of which is the rostral ventromedial medulla (RVM). Two distinct classes of RVM neurons, “ON-cells” and “OFF-cells,” exert net pronociceptive and antinociceptive effects, respectively. PB was recently shown to be a relay of nociceptive information to RVM ON- and OFF-cells. The present experiments used optogenetic methods in a lightly anesthetized rat and an adult RVM slice to determine whether there are direct, functionally relevant inputs to RVM pain-modulating neurons from PB. Whole-cell patch-clamp recordings demonstrated that PB conveys direct glutamatergic and GABAergic inputs to RVM neurons. Consistent with this, in vivo recording showed that nociceptive-evoked responses of ON- and OFF-cells were suppressed by optogenetic inactivation of archaerhodopsin (ArchT)-expressing PB terminals in RVM, demonstrating that a net inhibitory input to OFF-cells and net excitatory input to ON-cells are engaged by acute noxious stimulation. Further, the majority of ON- and OFF-cells responded to optogenetic activation of channelrhodopsin (ChR2)-expressing terminals in the RVM, confirming a direct PB influence on RVM painmodulating neurons. These data show that a direct connection from the PB to the RVM conveys nociceptive information to the pain-modulating neurons of RVM under basal conditions. They also reveal additional inputs from PB with the capacity to activate both classes of RVM pain-modulating neurons and the potential to be recruited under different physiological and pathophysiological conditions.

Original languageEnglish (US)
Article numbere0202-17.2017
JournaleNeuro
Volume4
Issue number3
DOIs
StatePublished - 2017

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Optogenetic evidence for a direct circuit linking nociceptive transmission through the parabrachial complex with pain-modulating neurons of the rostral ventromedial medulla (RVM)'. Together they form a unique fingerprint.

Cite this