Organic cation transporters are determinants of oxaliplatin cytotoxicity

Shuzhong Zhang, Katherine S. Lovejoy, James E. Shima, Leah L. Lagpacan, Yan Shu, Anna Lapuk, Ying Chen, Takafumi Komori, Joe W. Gray, Xin Chen, Stephen J. Lippard, Kathleen M. Giacomini

Research output: Contribution to journalArticlepeer-review

355 Scopus citations

Abstract

Although the platinum-based anticancer drugs cisplatin, carboplatin, and oxaliplatin have similar DNA-binding properties, only oxaliplatin is active against colorectal tumors. The mechanisms for this tumor specificity of platinum-based compounds are poorly understood but could be related to differences in uptake. This study shows that the human organic cation transporters (OCT) 1 and 2 (SLC22A1 and SLC22A2) markedly increase oxaliplatin, but not cisplatin or carboplatin, accumulation and cytotoxicity in transfected cells, indicating that oxaliplatin is an excellent substrate of these transporters. The cytotoxicity of oxaliplatin was greater than that of cisplatin in six colon cancer cell lines [mean ± SE of IC50 in the six cell lines, 3.9 ± 1.4 μmol/L (oxaliplatin) versus 11 ± 2.0 μmol/L (cisplatin)] but was reduced by an OCT inhibitor, cimetidine, to a level similar to, or even lower than that of, cisplatin (29 ± 11 μmol/L for oxaliplatin versus 19 ± 4.3 μmol/L for cisplatin). Structure-activity studies indicated that organic functionalities on nonleaving groups coordinated to platinum are critical for selective uptake by OCTs. These results indicate that OCT1 and OCT2 are major determinants of the anticancer activity of oxaliplatin and may contribute to its antitumor specificity. They also strongly suggest that expression of OCTs in tumors should be investigated as markers for selecting specific platinum-based therapies in individual patients. The development of new anticancer drugs, specifically targeted to OCTs, represents a novel strategy for targeted drug therapy. The results of the present structure-activity studies indicate specific tactics for realizing this goal.

Original languageEnglish (US)
Pages (from-to)8847-8857
Number of pages11
JournalCancer Research
Volume66
Issue number17
DOIs
StatePublished - Sep 1 2006
Externally publishedYes

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Organic cation transporters are determinants of oxaliplatin cytotoxicity'. Together they form a unique fingerprint.

Cite this