p53 regulates a mitotic transcription program and determines ploidy in normal mouse liver

Svitlana Kurinna, Sabrina A. Stratton, Zeynep Coban, Jill M. Schumacher, Markus Grompe, Andrew W. Duncan, Michelle Craig Barton

Research output: Contribution to journalArticlepeer-review

74 Scopus citations


Functions of p53 during mitosis reportedly include prevention of polyploidy and transmission of aberrant chromosomes. However, whether p53 plays these roles during genomic surveillance in vivo and, if so, whether this is done via direct or indirect means remain unknown. The ability of normal, mature hepatocytes to respond to stimuli, reenter the cell cycle, and regenerate liver mass offers an ideal setting to assess mitosis in vivo. In quiescent liver, normally high ploidy levels in adult mice increased with loss of p53. Following partial hepatectomy, p53-/- hepatocytes exhibited early entry into the cell cycle and prolonged proliferation with an increased number of polyploid mitoses. Ploidy levels increased during regeneration of both wild-type (WT) and p53-/- hepatocytes, but only WT hepatocytes were able to dynamically resolve ploidy levels and return to normal by the end of regeneration. We identified multiple cell cycle and mitotic regulators, including Foxm1, Aurka, Lats2, Plk2, and Plk4, as directly regulated by chromatin interactions of p53 in vivo. Over a time course of regeneration, direct and indirect regulation of expression by p53 is mediated in a gene-specific manner. Conclusion: Our results show that p53 plays a role in mitotic fidelity and ploidy resolution in hepatocytes of normal and regenerative liver. (HEPATOLOGY 2013)

Original languageEnglish (US)
Pages (from-to)2004-2013
Number of pages10
Issue number5
StatePublished - May 2013
Externally publishedYes

ASJC Scopus subject areas

  • Hepatology


Dive into the research topics of 'p53 regulates a mitotic transcription program and determines ploidy in normal mouse liver'. Together they form a unique fingerprint.

Cite this