Point set registration: Coherent point drifts

Andriy Myronenko, Xubo Song

Research output: Contribution to journalArticlepeer-review

1916 Scopus citations


Point set registration is a key component in many computer vision tasks. The goal of point set registration is to assign correspondences between two sets of points and to recover the transformation that maps one point set to the other. Multiple factors, including an unknown nonrigid spatial transformation, large dimensionality of point set, noise, and outliers, make the point set registration a challenging problem. We introduce a probabilistic method, called the Coherent Point Drift (CPD) algorithm, for both rigid and nonrigid point set registration. We consider the alignment of two point sets as a probability density estimation problem. We fit the Gaussian mixture model (GMM) centroids (representing the first point set) to the data (the second point set) by maximizing the likelihood. We force the GMM centroids to move coherently as a group to preserve the topological structure of the point sets. In the rigid case, we impose the coherence constraint by reparameterization of GMM centroid locations with rigid parameters and derive a closed form solution of the maximization step of the EM algorithm in arbitrary dimensions. In the nonrigid case, we impose the coherence constraint by regularizing the displacement field and using the variational calculus to derive the optimal transformation. We also introduce a fast algorithm that reduces the method computation complexity to linear. We test the CPD algorithm for both rigid and nonrigid transformations in the presence of noise, outliers, and missing points, where CPD shows accurate results and outperforms current state-of-the-art methods.

Original languageEnglish (US)
Article number5432191
Pages (from-to)2262-2275
Number of pages14
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Issue number12
StatePublished - 2010


  • Coherent Point Drift (CPD)
  • EM algorithm
  • Gaussian mixture model (GMM)
  • Registration
  • alignment
  • coherence
  • correspondence
  • matching
  • nonrigid
  • point sets
  • regularization
  • rigid

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition
  • Computational Theory and Mathematics
  • Artificial Intelligence
  • Applied Mathematics


Dive into the research topics of 'Point set registration: Coherent point drifts'. Together they form a unique fingerprint.

Cite this