Potential pathways for intercellular communication within the calbindin subnucleus of the hamster suprachiasmatic nucleus

Research output: Contribution to journalArticlepeer-review

40 Scopus citations


In mammals, the suprachiasmatic nucleus (SCN) is the master circadian pacemaker. Within the caudal hamster SCN, a cluster of neurons containing the calcium binding protein, calbindin-D28K (CB), has been implicated in circadian locomotion. However, calbindin-immunoreactive (CB+) neurons in the calbindin subnucleus (CBsn) do not display a circadian rhythm in spontaneous firing [Eur J Neurosci 16 (2002) 2469]. Previously, we proposed that intercellular communication might be essential in integrating outputs from rhythmic (CB-) neurons and nonrhythmic (CB+) neurons to produce a circadian output in the intact animal. The primary aim of this study is to provide a neuroanatomical framework to better understand intercellular communication within the CBsn. Using reconstructions of previously recorded neurons, we demonstrate that CB+ neurons have significantly more dendrites than CB- neurons. In addition, CBsn neurons have dorsally oriented dendritic arbors. Using double-label confocal microscopy, we show that GABA colocalizes with CB+ neurons and GABAA receptor subunits make intimate contacts with neurons in the CBsn. Transforming growth factor alpha (TGFα), a substance shown to inhibit locomotion [Science 294 (2001) 2511], is present within the CBsn. In addition, neurons in this region express the epidermal growth factor receptor, the only receptor for TGFα. Lastly, we show that CB+ neurons are coupled to CB+ and CB- neurons by gap junctions. The current study provides a structural framework for synaptic communication, electrical coupling, and signaling via a growth factor within the CBsn of the hamster SCN. Our results reveal connections that have the potential for integrating cellular communication within a subregion of the SCN that is critically involved in circadian locomotion.

Original languageEnglish (US)
Pages (from-to)87-99
Number of pages13
Issue number1
StatePublished - 2004


  • GABA
  • GABA receptor
  • Gap junction
  • Neurolucida

ASJC Scopus subject areas

  • Neuroscience(all)


Dive into the research topics of 'Potential pathways for intercellular communication within the calbindin subnucleus of the hamster suprachiasmatic nucleus'. Together they form a unique fingerprint.

Cite this