Quantitative metabolic profiles of 2nd and 3rd trimester human amniotic fluid using 1H HR-MAS spectroscopy

Brad R. Cohn, Bonnie N. Joe, Shoujun Zhao, John Kornak, Vickie Y. Zhang, Rahwa Iman, John Kurhanewicz, Kiarash Vahidi, Jingwei Yu, Aaron B. Caughey, Mark G. Swanson

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Object: To establish and compare normative metabolite concentrations in 2nd and 3rd trimester human amniotic fluid samples in an effort to reveal metabolic biomarkers of fetal health and development. Materials and methods: Twenty-one metabolite concentrations were compared between 2nd (15-27 weeks gestation, N = 23) and 3rd (29-39 weeks gestation, N = 27) trimester amniotic fluid samples using 1H high resolution magic angle spinning (HR-MAS) spectroscopy. Data were acquired using the electronic reference to access in vivo concentrations method and quantified using a modified semi-parametric quantum estimation algorithm modified for high-resolution ex vivo data. Results: Sixteen of 21 metabolite concentrations differed significantly between 2nd and 3rd trimester groups. Betaine (0.00846±0.00206 mmol/kg vs. 0.0133±0.0058 mmol/kg, P < 0.002) and creatinine (0.0124±0.0058 mmol/kg vs. 0.247±0.011 mmol/kg, P < 0.001) concentrations increased significantly, while glucose (5.96±1.66 mmol/kg vs. 2.41±1.69 mmol/kg, P < 0.001), citrate (0.740±0.217 mmol/kg vs. 0.399±0.137 mmol/kg, P < 0.001), pyruvate (0.0659±0.0103 mmol/kg vs. 0.0299±0.286 mmol/kg, P < 0.001), and numerous amino acid (e.g. alanine, glutamate, isoleucine, leucine, lysine, and valine) concentrations decreased significantly with advancing gestation. A stepwise multiple linear regression model applied to 50 samples showed that gestational age can be accurately predicted using combinations of alanine, glucose and creatinine concentrations. Conclusion: These results provide key normative data for 2nd and 3rd trimester amniotic fluid metabolite concentrations and provide the foundation for future development of magnetic resonance spectroscopy (MRS) biomarkers to evaluate fetal health and development.

Original languageEnglish (US)
Pages (from-to)343-352
Number of pages10
JournalMagnetic Resonance Materials in Physics, Biology and Medicine
Issue number6
StatePublished - Dec 2009
Externally publishedYes


  • Electronic reference to access in vivo concentrations (ERETIC)
  • Gestational age
  • High-resolution magic angle spinning (HR-MAS)
  • High-resolution quantum estimation (HR-QUEST)
  • Human amniotic fluid
  • Spectroscopy

ASJC Scopus subject areas

  • Biophysics
  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Quantitative metabolic profiles of 2nd and 3rd trimester human amniotic fluid using 1H HR-MAS spectroscopy'. Together they form a unique fingerprint.

Cite this