Robust cassie state of wetting in transparent superhydrophobic coatings

Urandelger Tuvshindorj, Adem Yildirim, Fahri Emre Ozturk, Mehmet Bayindir

Research output: Contribution to journalArticlepeer-review

90 Scopus citations


This paper investigates the stability of the Cassie state of wetting in transparent superhydrophobic coatings by comparing a single-layer microporous coating with a double-layer micro/nanoporous coating. Increasing pressure resistance of superhydrophobic coatings is of interest for practical use because high external pressures may be exerted on surfaces during operation. The Cassie state stability against the external pressure of coatings was investigated by squeezing droplets sitting on surfaces with a hydrophobic plate. Droplets on the single-layer coating transformed to the Wenzel state and pinned to the surface after squeezing, whereas droplets on the double-layer micro/nanoporous coating preserved the Cassie state and rolled off the surface easily. In addition, the contact angle and contact-line diameter of water droplets during evaporation from surfaces were in situ investigated to further understand the stability of coatings against Wenzel transition. A droplet on a microporous coating gradually transformed to the Wenzel state and lost its spherical shape as the droplet volume decreased (i.e., the internal pressure of the droplet increased). The contact line of the droplet during evaporation remained almost unchanged. In contrast, a water droplet on a double-layer surface preserved its spherical shape even at the last stages of the evaporation process, where pressure differences as high as a few thousand pascals were generated. For this case, the droplet contact line retracted during evaporation and the droplet recovered the initial water contact angle. The demonstrated method for the preparation of robust transparent superhydrophobic coatings is promising for outdoor applications such as self-cleaning cover glasses for solar cells and nonwetting windows.

Original languageEnglish (US)
Pages (from-to)9680-9688
Number of pages9
JournalACS Applied Materials and Interfaces
Issue number12
StatePublished - Jun 25 2014
Externally publishedYes


  • Cassie state stability
  • evaporation
  • organically modified silica
  • self-cleaning
  • superhydrophobic
  • wettability

ASJC Scopus subject areas

  • Materials Science(all)


Dive into the research topics of 'Robust cassie state of wetting in transparent superhydrophobic coatings'. Together they form a unique fingerprint.

Cite this