Sensitive genetically encoded sensors for population and subcellular imaging of cAMP in vivo

Crystian I. Massengill, Landon Bayless-Edwards, Cesar C. Ceballos, Elizabeth R. Cebul, James Cahill, Arpita Bharadwaj, Evan Wilson, Maozhen Qin, Matthew R. Whorton, Isabelle Baconguis, Bing Ye, Tianyi Mao, Haining Zhong

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Cyclic adenosine monophosphate (cAMP) signaling integrates information from diverse G-protein-coupled receptors, such as neuromodulator receptors, to regulate pivotal biological processes in a cellular-specific and subcellular-specific manner. However, in vivo cellular-resolution imaging of cAMP dynamics remains challenging. Here, we screen existing genetically encoded cAMP sensors and further develop the best performer to derive three improved variants, called cAMPFIREs. Compared with their parental sensor, these sensors exhibit up to 10-fold increased sensitivity to cAMP and a cytosolic distribution. cAMPFIREs are compatible with both ratiometric and fluorescence lifetime imaging and can detect cAMP dynamics elicited by norepinephrine at physiologically relevant, nanomolar concentrations. Imaging of cAMPFIREs in awake mice reveals tonic levels of cAMP in cortical neurons that are associated with wakefulness, modulated by opioids, and differentially regulated across subcellular compartments. Furthermore, enforced locomotion elicits neuron-specific, bidirectional cAMP dynamics. cAMPFIREs also function in Drosophila. Overall, cAMPFIREs may have broad applicability for studying intracellular signaling in vivo.

Original languageEnglish (US)
Pages (from-to)1461-1471
Number of pages11
JournalNature Methods
Issue number11
StatePublished - Nov 2022
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Sensitive genetically encoded sensors for population and subcellular imaging of cAMP in vivo'. Together they form a unique fingerprint.

Cite this