TY - JOUR
T1 - Shipworm bioerosion of lithic substrates in a freshwater setting, Abatan River, Philippines
T2 - Ichnologic, paleoenvironmental and biogeomorphical implications
AU - Reuben Shipway, J.
AU - Rosenberg, Gary
AU - Concepcion, Gisela P.
AU - Haygood, Margo G.
AU - Savrda, Charles
AU - Distel, Daniel L.
N1 - Funding Information:
The research reported in this publication was supported by Fogarty International Center of the National Institutes of Health Award U19TW008163 (to MGH, GR, GPC, and DLD), by National Science Foundation Award IOS1442759 (to DLD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors would like to thank Melfeb Chicote (Marine Science Institute, University of the Philippines) for assistance collecting specimens. Part of this work was completed under the supervision of the Department of Agriculture Bureau of Fisheries and Aquatic Resources, Philippines (DA-BFAR), in compliance with all required legal instruments and regulatory issuances covering the conduct of the research. All Philippine specimens used in this study were obtained using Gratuitous Permit 0140–17 issued by DA-BFAR.
Publisher Copyright:
© 2019 Shipway et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019/10
Y1 - 2019/10
N2 - Teredinid bivalves, commonly referred to as shipworms, are known for their propensity to inhabit, bioerode, and digest woody substrates across a range of brackish and fully marine settings. Shipworm body fossils and/or their borings, which are most allied with the ichnotaxon Teredolites longissimus, are found in wood preserved in sedimentary sequences ranging in age from Early Cretaceous to Recent and traditionally they have been regarded as evidence of marginal marine or marine depositional environments. Recent studies associated with the Philippine Mollusk Symbiont International Collaboration Biodiversity Group (PMS-ICBG) expedition on the island of Bohol, Philippines, have identified a new shipworm taxon (Lithoredo abatanica) that is responsible for macrobioerosion of a moderately indurated Neogene foraminiferal packstone cropping out along a freshwater reach of the Abatan River. In the process of drilling into and ingesting the limestone, these shipworms produce elongate borings that expand in diameter very gradually toward distal termini, exhibit sinuous or highly contorted axes and circular transverse outlines, and are lined along most of their length by a calcite tube. Given their strong resemblance to T. longissimus produced in wood but their unusual occurrence in a lithic substrate, these shipworm borings can be regarded as incipient Gastrochaenolites or, alternatively, as Apectoichnus. The alternate names reflect that the borings provide a testbed for ideas of the appropriateness of substrate as an ichnotaxobasis. The discovery of previously unrecognized shipworm borings in lithic substrates and the co-occurrence of another shipworm (Nausitora) in submerged logs in the same freshwater setting have implications for interpreting depositional conditions based on fossil teredinids or their ichnofossils. Of equal significance, the Abatan River study demonstrates that macrobioerosion in freshwater systems may be just as important as it is in marine systems with regard to habitat creation and landscape development. L. abatanica serve as ecosystems engineers in the sense that networks of their abandoned borings provide habitats for a variety of nestling invertebrates, and associated bioerosion undoubtedly enhances rates of mechanical and chemical degradation, thus influencing the Abatan River profile.
AB - Teredinid bivalves, commonly referred to as shipworms, are known for their propensity to inhabit, bioerode, and digest woody substrates across a range of brackish and fully marine settings. Shipworm body fossils and/or their borings, which are most allied with the ichnotaxon Teredolites longissimus, are found in wood preserved in sedimentary sequences ranging in age from Early Cretaceous to Recent and traditionally they have been regarded as evidence of marginal marine or marine depositional environments. Recent studies associated with the Philippine Mollusk Symbiont International Collaboration Biodiversity Group (PMS-ICBG) expedition on the island of Bohol, Philippines, have identified a new shipworm taxon (Lithoredo abatanica) that is responsible for macrobioerosion of a moderately indurated Neogene foraminiferal packstone cropping out along a freshwater reach of the Abatan River. In the process of drilling into and ingesting the limestone, these shipworms produce elongate borings that expand in diameter very gradually toward distal termini, exhibit sinuous or highly contorted axes and circular transverse outlines, and are lined along most of their length by a calcite tube. Given their strong resemblance to T. longissimus produced in wood but their unusual occurrence in a lithic substrate, these shipworm borings can be regarded as incipient Gastrochaenolites or, alternatively, as Apectoichnus. The alternate names reflect that the borings provide a testbed for ideas of the appropriateness of substrate as an ichnotaxobasis. The discovery of previously unrecognized shipworm borings in lithic substrates and the co-occurrence of another shipworm (Nausitora) in submerged logs in the same freshwater setting have implications for interpreting depositional conditions based on fossil teredinids or their ichnofossils. Of equal significance, the Abatan River study demonstrates that macrobioerosion in freshwater systems may be just as important as it is in marine systems with regard to habitat creation and landscape development. L. abatanica serve as ecosystems engineers in the sense that networks of their abandoned borings provide habitats for a variety of nestling invertebrates, and associated bioerosion undoubtedly enhances rates of mechanical and chemical degradation, thus influencing the Abatan River profile.
UR - http://www.scopus.com/inward/record.url?scp=85074341085&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074341085&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0224551
DO - 10.1371/journal.pone.0224551
M3 - Article
C2 - 31671146
AN - SCOPUS:85074341085
SN - 1932-6203
VL - 14
JO - PloS one
JF - PloS one
IS - 10
M1 - e0224551
ER -