Abstract
Short latency visual evoked potentials (SVEPs) have been described in response to high-intensity, strobe flashes. High-intensity flashes can now be generated from goggle-mounted light emitting diodes (LEDs) and the SVEPs to such flashes have been shown to be reproducible across subjects, avoiding photic spread to the examination room and acoustical artifacts from the strobe stimulator. In this study, SVEPs from multichannel records are described in terms of normative latencies and amplitudes, as well as scalp distributions, to explore their generators. Potentials were recorded from 10 young male subjects, from 16 scalp locations, in response to flashes from goggle-mounted LEDs. Flashes were presented to each eye in turn, as well as binocularly. The latencies, scalp distributions and intersubject variabilities of the LED evoked SVEPs were similar to those obtained with strobe flashes. SVEP components were divided into 3 groups, according to their latency and the electrodes at which they were recorded with the largest amplitudes: periocular (under 40 msec latency), fronto-central (40-55 msec) and parieto-occipital (55-80 msec latency). The scalp distributions observed in this study suggest subcortical generators along the visual pathway, beginning at the retina. The use of goggle-mounted LEDs should promote routine evaluation of the integrity of the visual pathway between retina and cortex using SVEPs.
Original language | English (US) |
---|---|
Pages (from-to) | 502-508 |
Number of pages | 7 |
Journal | Electroencephalography and Clinical Neurophysiology/ Evoked Potentials |
Volume | 96 |
Issue number | 6 |
DOIs | |
State | Published - Nov 1995 |
Externally published | Yes |
Keywords
- Flash
- Human
- Short latency VEP
- Sub-cortical
ASJC Scopus subject areas
- Neuroscience(all)
- Clinical Neurology