TY - JOUR
T1 - Skin care interventions in infants for preventing eczema and food allergy
AU - Kelleher, Maeve M.
AU - Cro, Suzie
AU - Cornelius, Victoria
AU - Lodrup Carlsen, Karin C.
AU - Skjerven, Håvard O.
AU - Rehbinder, Eva M.
AU - Lowe, Adrian J.
AU - Dissanayake, Eishika
AU - Shimojo, Naoki
AU - Yonezawa, Kaori
AU - Ohya, Yukihiro
AU - Yamamoto-Hanada, Kiwako
AU - Morita, Kumiko
AU - Axon, Emma
AU - Surber, Christian
AU - Cork, Michael
AU - Cooke, Alison
AU - Tran, Lien
AU - Van Vogt, Eleanor
AU - Schmitt, Jochen
AU - Weidinger, Stephan
AU - McClanahan, Danielle
AU - Simpson, Eric
AU - Duley, Lelia
AU - Askie, Lisa M.
AU - Chalmers, Joanne R.
AU - Williams, Hywel C.
AU - Boyle, Robert J.
N1 - Funding Information:
Of the 11 trials contributing to one or more meta-analyses, two did not specify funding (McClanahan 2019; Migacheva 2018); the other nine contributing trials were funded through higher-level institutions. Of the six trials that contributed aggregate data that were not relevant for inclusion in one or more meta-analyses, three studies did not specify funding, two were supported by local hospitals, and one was commercially sponsored. Of the 16 trials that did not contribute any data on outcomes, two did not report on funding, two were sponsored by local hospitals, one was sponsored by a local hospital and the Gates Foundation, and the other 11 were commercially sponsored. We are grateful to Emma Thomas, Boaz Gaventas, Alexa Baracaia, and the Centre of Evidence Based Dermatology patient panel for feedback on prioritisation of outcomes and outcome measures for this systematic review. The draft search strategy for the World Health Organization International Clinical Trials Registry Platform was developed with advice from Douglas Grindlay, Information Specialist at the Centre of Evidence Based Dermatology, University of Nottingham, Nottingham, UK. We are extremely grateful to Liz Doney, Business Manager and Information Specialist at Nottingham University, who ran the search of the Cochrane Skin Specialised Register, the CENTRAL database, MEDLINE, and Embase in October 2019 and for the update in July 2020. We gratefully acknowledge all members of the wider SCiPAD group, especially those who contributed to discussion and input at the annual meetings in Munich 2018, and Lisbon 2019, and at the online results meeting in 2020, including Sarah Brown, Carsten Flohr, Elisabeth Harberl, Jonathan Hourihane, Michael Perkin, Jochen Schmidt, and Stephan Weidinger. This systematic review is supported by an award of an NIHR Transitional Research Fellowship to MK hosted by Imperial College London, and an award of an NIHR Research for Patient Benefit grant to Nottingham University Hospitals NHS Trust. The Cochrane Skin editorial base wishes to thank Robert Dellavalle, Cochrane Dermatology Editor for this review; Jennifer Hilgart, Cochrane MOSS Network Associate Editor, who provided methodological peer review for this review; Simon Turner, who provided statistical peer review through the Cochrane Methods Support Unit; Helen A Brough and Masaki Futamura, clinical referees; Amanda Roberts, consumer referee; Dolores Matthews who copy-edited the review; and Carolyn Hughes who wrote the plain language summary. We are also indebted to all participants of the individual studies whose contributions have furthered our knowledge on skin care in infants.
Publisher Copyright:
Copyright © 2021 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
PY - 2021/2/5
Y1 - 2021/2/5
N2 - Background: Eczema and food allergy are common health conditions that usually begin in early childhood and often occur together in the same people. They can be associated with an impaired skin barrier in early infancy. It is unclear whether trying to prevent or reverse an impaired skin barrier soon after birth is effective in preventing eczema or food allergy. Objectives: Primary objective. To assess effects of skin care interventions, such as emollients, for primary prevention of eczema and food allergy in infants. Secondary objective. To identify features of study populations such as age, hereditary risk, and adherence to interventions that are associated with
the greatest treatment benefit or harm for both eczema and food allergy. Search methods: We searched the following databases up to July 2020: Cochrane Skin Specialised Register, CENTRAL, MEDLINE, and Embase. We searched two trials registers and checked reference lists of included studies and relevant systematic reviews for further references to relevant randomised controlled trials (RCTs). We contacted field experts to identify planned trials and to seek information about unpublished or incomplete trials. Selection criteria: RCTs of skin care interventions that could potentially enhance skin barrier function, reduce dryness, or reduce subclinical inflammation in healthy term (> 37 weeks) infants (0 to 12 months) without pre-existing diagnosis of eczema, food allergy, or other skin condition were included. Comparison was standard care in the locality or no treatment. Types of skin care interventions included moisturisers/emollients; bathing products; advice regarding reducing soap exposure and bathing frequency; and use of water softeners. No minimum follow-up was required. Data collection and analysis: This is a prospective individual participant data (IPD) meta-analysis. We used standard Cochrane methodological procedures, and primary analyses used the IPD dataset. Primary outcomes were cumulative incidence of eczema and cumulative incidence of immunoglobulin (Ig)E-mediated food allergy by one to three years, both measured by the closest available time point to two years. Secondary outcomes included adverse events during the intervention period; eczema severity (clinician-assessed); parent report of eczema severity; time to onset of eczema; parent report of immediate food allergy; and allergic sensitisation to food or inhalant allergen. Main results: This review identified 33 RCTs, comprising 25,827 participants. A total of 17 studies, randomising 5823 participants, reported information on one or more outcomes specified in this review. Eleven studies randomising 5217 participants, with 10 of these studies providing IPD, were included in one or more meta-analysis (range 2 to 9 studies per individual meta-analysis). Most studies were conducted at children's hospitals. All interventions were compared against no skin care intervention or local standard care. Of the 17 studies that reported our outcomes, 13 assessed emollients. Twenty-five studies, including all those contributing data to meta-analyses, randomised newborns up to age three weeks to receive a skin care intervention or standard infant skin care. Eight of the 11 studies contributing to meta-analyses recruited infants at high risk of developing eczema or food allergy, although definition of high risk varied between studies. Durations of intervention and follow-up ranged from 24 hours to two years. We assessed most of this review's evidence as low certainty or had some concerns of risk of bias. A rating of some concerns was most often due to lack of blinding of outcome assessors or significant missing data, which could have impacted outcome measurement but was judged unlikely to have done so. Evidence for the primary food allergy outcome was rated as high risk of bias due to inclusion of only one trial where findings varied when different assumptions were made about missing data. Skin care interventions during infancy probably do not change risk of eczema by one to two years of age (risk ratio (RR) 1.03, 95% confidence interval (CI) 0.81 to 1.31; moderate-certainty evidence; 3075 participants, 7 trials) nor time to onset of eczema (hazard ratio 0.86, 95% CI 0.65 to 1.14; moderate-certainty evidence; 3349 participants, 9 trials). It is unclear whether skin care interventions during infancy change risk of IgE-mediated food allergy by one to two years of age (RR 2.53, 95% CI 0.99 to 6.47; 996 participants, 1 trial) or allergic sensitisation to a food allergen at age one to two years (RR 0.86, 95% CI 0.28 to 2.69; 1055 participants, 2 trials) due to very low-certainty evidence for these outcomes. Skin care interventions during infancy may slightly increase risk of parent report of immediate reaction to a common food allergen at two years (RR 1.27, 95% CI 1.00 to 1.61; low-certainty evidence; 1171 participants, 1 trial). However, this was only seen for cow’s milk, and may be unreliable due to significant over-reporting of cow’s milk allergy in infants. Skin care interventions during infancy probably increase risk of skin infection over the intervention period (RR 1.34, 95% CI 1.02 to 1.77; moderate-certainty evidence; 2728 participants, 6 trials) and may increase risk of infant slippage over the intervention period (RR 1.42, 95% CI 0.67 to 2.99; low-certainty evidence; 2538 participants, 4 trials) or stinging/allergic reactions to moisturisers (RR 2.24, 95% 0.67 to 7.43; low-certainty evidence; 343 participants, 4 trials), although confidence intervals for slippages and stinging/allergic reactions are wide and include the possibility of no effect or reduced risk. Preplanned subgroup analyses show that effects of interventions were not influenced by age, duration of intervention, hereditary risk, FLG mutation, or classification of intervention type for risk of developing eczema. We could not evaluate these effects on risk of food allergy. Evidence was insufficient to show whether adherence to interventions influenced the relationship between skin care interventions and risk of developing eczema or food allergy. Authors' conclusions: Skin care interventions such as emollients during the first year of life in healthy infants are probably not effective for preventing eczema, and probably increase risk of skin infection. Effects of skin care interventions on risk of food allergy are uncertain. Further work is needed to understand whether different approaches to infant skin care might promote or prevent eczema and to evaluate effects on food allergy based on robust outcome assessments.
AB - Background: Eczema and food allergy are common health conditions that usually begin in early childhood and often occur together in the same people. They can be associated with an impaired skin barrier in early infancy. It is unclear whether trying to prevent or reverse an impaired skin barrier soon after birth is effective in preventing eczema or food allergy. Objectives: Primary objective. To assess effects of skin care interventions, such as emollients, for primary prevention of eczema and food allergy in infants. Secondary objective. To identify features of study populations such as age, hereditary risk, and adherence to interventions that are associated with
the greatest treatment benefit or harm for both eczema and food allergy. Search methods: We searched the following databases up to July 2020: Cochrane Skin Specialised Register, CENTRAL, MEDLINE, and Embase. We searched two trials registers and checked reference lists of included studies and relevant systematic reviews for further references to relevant randomised controlled trials (RCTs). We contacted field experts to identify planned trials and to seek information about unpublished or incomplete trials. Selection criteria: RCTs of skin care interventions that could potentially enhance skin barrier function, reduce dryness, or reduce subclinical inflammation in healthy term (> 37 weeks) infants (0 to 12 months) without pre-existing diagnosis of eczema, food allergy, or other skin condition were included. Comparison was standard care in the locality or no treatment. Types of skin care interventions included moisturisers/emollients; bathing products; advice regarding reducing soap exposure and bathing frequency; and use of water softeners. No minimum follow-up was required. Data collection and analysis: This is a prospective individual participant data (IPD) meta-analysis. We used standard Cochrane methodological procedures, and primary analyses used the IPD dataset. Primary outcomes were cumulative incidence of eczema and cumulative incidence of immunoglobulin (Ig)E-mediated food allergy by one to three years, both measured by the closest available time point to two years. Secondary outcomes included adverse events during the intervention period; eczema severity (clinician-assessed); parent report of eczema severity; time to onset of eczema; parent report of immediate food allergy; and allergic sensitisation to food or inhalant allergen. Main results: This review identified 33 RCTs, comprising 25,827 participants. A total of 17 studies, randomising 5823 participants, reported information on one or more outcomes specified in this review. Eleven studies randomising 5217 participants, with 10 of these studies providing IPD, were included in one or more meta-analysis (range 2 to 9 studies per individual meta-analysis). Most studies were conducted at children's hospitals. All interventions were compared against no skin care intervention or local standard care. Of the 17 studies that reported our outcomes, 13 assessed emollients. Twenty-five studies, including all those contributing data to meta-analyses, randomised newborns up to age three weeks to receive a skin care intervention or standard infant skin care. Eight of the 11 studies contributing to meta-analyses recruited infants at high risk of developing eczema or food allergy, although definition of high risk varied between studies. Durations of intervention and follow-up ranged from 24 hours to two years. We assessed most of this review's evidence as low certainty or had some concerns of risk of bias. A rating of some concerns was most often due to lack of blinding of outcome assessors or significant missing data, which could have impacted outcome measurement but was judged unlikely to have done so. Evidence for the primary food allergy outcome was rated as high risk of bias due to inclusion of only one trial where findings varied when different assumptions were made about missing data. Skin care interventions during infancy probably do not change risk of eczema by one to two years of age (risk ratio (RR) 1.03, 95% confidence interval (CI) 0.81 to 1.31; moderate-certainty evidence; 3075 participants, 7 trials) nor time to onset of eczema (hazard ratio 0.86, 95% CI 0.65 to 1.14; moderate-certainty evidence; 3349 participants, 9 trials). It is unclear whether skin care interventions during infancy change risk of IgE-mediated food allergy by one to two years of age (RR 2.53, 95% CI 0.99 to 6.47; 996 participants, 1 trial) or allergic sensitisation to a food allergen at age one to two years (RR 0.86, 95% CI 0.28 to 2.69; 1055 participants, 2 trials) due to very low-certainty evidence for these outcomes. Skin care interventions during infancy may slightly increase risk of parent report of immediate reaction to a common food allergen at two years (RR 1.27, 95% CI 1.00 to 1.61; low-certainty evidence; 1171 participants, 1 trial). However, this was only seen for cow’s milk, and may be unreliable due to significant over-reporting of cow’s milk allergy in infants. Skin care interventions during infancy probably increase risk of skin infection over the intervention period (RR 1.34, 95% CI 1.02 to 1.77; moderate-certainty evidence; 2728 participants, 6 trials) and may increase risk of infant slippage over the intervention period (RR 1.42, 95% CI 0.67 to 2.99; low-certainty evidence; 2538 participants, 4 trials) or stinging/allergic reactions to moisturisers (RR 2.24, 95% 0.67 to 7.43; low-certainty evidence; 343 participants, 4 trials), although confidence intervals for slippages and stinging/allergic reactions are wide and include the possibility of no effect or reduced risk. Preplanned subgroup analyses show that effects of interventions were not influenced by age, duration of intervention, hereditary risk, FLG mutation, or classification of intervention type for risk of developing eczema. We could not evaluate these effects on risk of food allergy. Evidence was insufficient to show whether adherence to interventions influenced the relationship between skin care interventions and risk of developing eczema or food allergy. Authors' conclusions: Skin care interventions such as emollients during the first year of life in healthy infants are probably not effective for preventing eczema, and probably increase risk of skin infection. Effects of skin care interventions on risk of food allergy are uncertain. Further work is needed to understand whether different approaches to infant skin care might promote or prevent eczema and to evaluate effects on food allergy based on robust outcome assessments.
UR - http://www.scopus.com/inward/record.url?scp=85101249050&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101249050&partnerID=8YFLogxK
U2 - 10.1002/14651858.CD013534.pub2
DO - 10.1002/14651858.CD013534.pub2
M3 - Review article
C2 - 33545739
AN - SCOPUS:85101249050
SN - 1465-1858
VL - 2021
JO - The Cochrane database of systematic reviews
JF - The Cochrane database of systematic reviews
IS - 2
M1 - CD013534
ER -