Stretch-activated ion channels identified in the touch-sensitive structures of carnivorous droseraceae plants

Carl Procko, Swetha Murthy, William T. Keenan, Seyed Ali Reza Mousavi, Tsegaye Dabi, Adam Coombs, Erik Procko, Lisa Baird, Ardem Patapoutian, Joanne Chory

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

In response to touch, some carnivorous plants such as the Venus flytrap have evolved spectacular movements to capture animals for nutrient acquisition. However, the molecules that confer this sensitivity remain unknown. We used comparative transcriptomics to show that expression of three genes encoding homologs of the MscS-Like (MSL) and OSCA/TMEM63 family of mechanosensitive ion channels are localized to touch-sensitive trigger hairs of Venus flytrap. We focus here on the candidate with the most enriched expression in trigger hairs, the MSL homolog FLYCATCHER1 (FLYC1). We show that FLYC1 transcripts are localized to mechanosensory cells within the trigger hair, transfecting FLYC1 induces chloride-permeable stretch-activated currents in naïve cells, and transcripts coding for FLYC1 homologs are expressed in touch-sensing cells of Cape sundew, a related carnivorous plant of the Droseraceae family. Our data suggest that the mechanism of prey recognition in carnivorous Droseraceae evolved by co-opting ancestral mechanosensitive ion channels to sense touch.

Original languageEnglish (US)
Article numbere64250
JournaleLife
Volume10
DOIs
StatePublished - Mar 2021
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Stretch-activated ion channels identified in the touch-sensitive structures of carnivorous droseraceae plants'. Together they form a unique fingerprint.

Cite this