Abstract
Oxalate oxidase (EC 1.2.3.4) catalyzes the conversion of oxalate and dioxygen to hydrogen peroxide and carbon dioxide. In this study, glycolate was used as a structural analogue of oxalate to investigate substrate binding in the crystalline enzyme. The observed monodentate binding of glycolate to the active site manganese ion of oxalate oxidase is consistent with a mechanism involving C-C bond cleavage driven by superoxide anion attack on a monodentate coordinated substrate. In this mechanism, the metal serves two functions: to organize the substrates (oxalate and dioxygen) and to transiently reduce dioxygen. The observed structure further implies important roles for specific active site residues (two asparagines and one glutamine) in correctly orientating the substrates and reaction intermediates for catalysis. Combined spectroscopic, biochemical, and structural analyses of mutants confirms the importance of the asparagine residues in organizing a functional active site complex.
Original language | English (US) |
---|---|
Pages (from-to) | 6428-6433 |
Number of pages | 6 |
Journal | Journal of Biological Chemistry |
Volume | 281 |
Issue number | 10 |
DOIs | |
State | Published - Mar 10 2006 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology