Abstract
The dopamine D4 receptor (D4R) is a candidate gene for attention deficit/hyperactivity disorder (ADHD) based on genetic studies reporting that particular polymorphisms are present at a higher frequency in affected children. However, the direct participation of the D4R in the onset or progression of ADHD has not been tested. Here, we generated a mouse model with high face value to screen candidate genes for the clinical disorder by neonatal disruption of central dopaminergic pathways with 6-hydroxydopamine (6-OHDA). The lesioned mice exhibited hyperactivity that waned after puberty, paradoxical hypolocomotor responses to amphetamine and methylphenidate, poor behavioral inhibition in approach/avoidance conflict tests and deficits in continuously performed motor coordination tasks. To determine whether the D4R plays a role in these behavioral phenotypes, we performed 6-OHDA lesions in neonatal mice lacking D4Rs (Drd4-/-). Although striatal dopamine contents and tyrosine hydroxylase-positive midbrain neurons were reduced to the same extent in both genotypes, Drd4-/- mice lesioned with 6-OHDA did not develop hyperactivity. Similarly, the D4R antagonist PNU-101387G prevented hyperactivity in wild-type 6-OHDA-lesioned mice. Furthermore, wild-type mice lesioned with 6-OHDA showed an absence of behavioral inhibition when tested in the open field or the elevated plus maze, while their Drd4-/- siblings exhibited normal avoidance for the unprotected areas of these mazes. Together, our results from a combination of genetic and pharmacological approaches demonstrate that D4R signaling is essential for the expression of juvenile hyperactivity and impaired behavioral inhibition, relevant features present in this ADHD-like mouse model.
Original language | English (US) |
---|---|
Pages (from-to) | 718-726 |
Number of pages | 9 |
Journal | Molecular Psychiatry |
Volume | 9 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2004 |
Externally published | Yes |
Keywords
- 6-hydroxydopamine
- ADHD
- Amphetamine
- D4R knockout mouse
- Methylphenidate
ASJC Scopus subject areas
- Molecular Biology
- Psychiatry and Mental health
- Cellular and Molecular Neuroscience