The effect of three finishing systems on four esthetic restorative materials

D. C. Hoelscher, A. M.L. Neme, F. E. Pink, P. J. Hughes

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

Previous studies have investigated the finishing and smoothness of composite and traditional glass-ionomer restorations, but few have included resin-modified glass-ionomer cements or more recent finishing systems. The results of using three different finishing systems (Sof-Lex, Enhance, finishing burs) on two composites (Silux, Prisma TPH), a traditional glass ionomer (Ketac-Fil), and a resin-modified glass ionomer (Fuji II LC) were studied. Sixty samples were condensed into sectioned acrylic tubes, covered with a Mylar matrix plus a glass slide at each surface, then cured as per the manufacturers' instructions. Samples were randomized to three groups of five for each material and testing with a Surfanalyzer 4000 of unfinished samples (cured with Mylar matrix) was done to obtain baseline average surface roughness (R a). Samples were then finished as per the manufacturers' instructions using polishing disks, abrasive impregnated disks, and finishing burs before further surface testing. Samples finished with burs and with abrasive impregnated disks were further polished using polishing paste (Prisma Gloss) and again tested. Data were analyzed with ANOVA testing and Tukey's HSD pairwise comparison. Initial testing after randomization to groups showed no significant difference in surface roughness (P = 0.24). Two-factor analysis revealed no significant difference between materials (P = 0.34), a significant difference in method of finish (P ≤ 0.00), with no significant interaction between type of material and method of finish (P = 0.11). Aluminum oxide disk and impregnated disk systems provided the best finish for microfilled composite and both glass-ionomer materials (P ≤ 0.00). No significant difference in method of finish existed with the hybrid composite (P = 0.07). Overall, esthetic restorative material finishing is best accomplished using abrasive impregnated disks or aluminum oxide disks. Finishing burs gave a significantly rougher surface than the former methods.

Original languageEnglish (US)
Pages (from-to)36-42
Number of pages7
JournalOperative dentistry
Volume23
Issue number1
StatePublished - Jan 1998
Externally publishedYes

ASJC Scopus subject areas

  • General Dentistry

Fingerprint

Dive into the research topics of 'The effect of three finishing systems on four esthetic restorative materials'. Together they form a unique fingerprint.

Cite this