TY - JOUR
T1 - The heme metabolite carbon monoxide facilitates KSHV infection by inhibiting TLR4 signaling in endothelial cells
AU - Botto, Sara
AU - Gustin, Jean K.
AU - Moses, Ashlee V.
N1 - Funding Information:
We thank the following individuals for the generous provision of reagents that were used in the execution of the research described: Dr. Rolf Renne (University of Florida, Gainesville, FL, USA); Dr. Jae Jung (University of Southern California, Los Angeles, CA, USA); Dr. Bala Chandran (Rosalind Franklin University of Medicine and Science, Chicago, IL, USA); Dr. Ajay Gupta (Osta Biotechnologies, Inc., Dollard-des-Ormeaux, QC, Canada); Dr. Chuan He (University of Chicago, IL, USA). This research was supported by grants R01 CA179921 (AM and JG) and P51 OD011092 (AVM) from the NIH and award 14PRE20320014 (SB) from the America Heart Association.
Publisher Copyright:
© 2017 Botto, Gustin and Moses.
PY - 2017/4/3
Y1 - 2017/4/3
N2 - Kaposi sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi sarcoma (KS) and certain rare B cell lymphoproliferative disorders. KSHV infection of endothelial cells (EC) in vitro increases expression of the inducible host-encoded enzyme heme oxygenase-1 (HO-1), which is also strongly expressed in KS tumors. HO-1 catalyzes the rate-limiting step in the conversion of heme into iron, biliverdin and the gasotransmitter carbon monoxide (CO), all of which share anti-apoptotic, anti-inflammatory, pro-survival, and tumorigenic activities. Our previous work has shown that HO-1 expression in KSHV-infected EC is characterized by a rapid yet transient induction at early times post-infection, followed by a sustained upregulation co-incident with establishment of viral latency. These two phases of expression are independently regulated, suggesting distinct roles for HO-1 in the virus life cycle. Here, we investigated the role of HO-1 during acute infection, prior to the onset of viral gene expression. The early infection phase involves a series of events that culminate in delivery of the viral genome to the nucleus. Primary infection also leads to activation of host innate immune effectors, including the pattern recognition receptor TLR4, to induce an antiviral response. It has been shown that TLR4-deficient EC are more susceptible to KSHV infection than wild-type controls, suggesting an important inhibitory role for TLR4 in the KSHV life cycle. TLR4 signaling is in turn subject to regulation by several virus-encoded immune evasion factors. In this report we identify HO-1 as a host protein co-opted by KSHV as part of a rapid immune evasion strategy. Specifically, we show that early HO-1 induction by KSHV results in increased levels of endogenous CO, which functions as a TLR4 signaling inhibitor. In addition, we show that CO-mediated inhibition of TLR4 signaling leads to reduced expression of TLR4-induced antiviral genes, thus dampening the host antiviral response and facilitating KSHV infection. Conversely, inhibition of HO-1 activity decreases intracellular CO, enhances the host antiviral response and inhibits KSHV infection. In conclusion, this study identifies HO-1 as a novel innate immune evasion factor in the context of KSHV infection and supports HO-1 inhibition as a viable therapeutic strategy for KS.
AB - Kaposi sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi sarcoma (KS) and certain rare B cell lymphoproliferative disorders. KSHV infection of endothelial cells (EC) in vitro increases expression of the inducible host-encoded enzyme heme oxygenase-1 (HO-1), which is also strongly expressed in KS tumors. HO-1 catalyzes the rate-limiting step in the conversion of heme into iron, biliverdin and the gasotransmitter carbon monoxide (CO), all of which share anti-apoptotic, anti-inflammatory, pro-survival, and tumorigenic activities. Our previous work has shown that HO-1 expression in KSHV-infected EC is characterized by a rapid yet transient induction at early times post-infection, followed by a sustained upregulation co-incident with establishment of viral latency. These two phases of expression are independently regulated, suggesting distinct roles for HO-1 in the virus life cycle. Here, we investigated the role of HO-1 during acute infection, prior to the onset of viral gene expression. The early infection phase involves a series of events that culminate in delivery of the viral genome to the nucleus. Primary infection also leads to activation of host innate immune effectors, including the pattern recognition receptor TLR4, to induce an antiviral response. It has been shown that TLR4-deficient EC are more susceptible to KSHV infection than wild-type controls, suggesting an important inhibitory role for TLR4 in the KSHV life cycle. TLR4 signaling is in turn subject to regulation by several virus-encoded immune evasion factors. In this report we identify HO-1 as a host protein co-opted by KSHV as part of a rapid immune evasion strategy. Specifically, we show that early HO-1 induction by KSHV results in increased levels of endogenous CO, which functions as a TLR4 signaling inhibitor. In addition, we show that CO-mediated inhibition of TLR4 signaling leads to reduced expression of TLR4-induced antiviral genes, thus dampening the host antiviral response and facilitating KSHV infection. Conversely, inhibition of HO-1 activity decreases intracellular CO, enhances the host antiviral response and inhibits KSHV infection. In conclusion, this study identifies HO-1 as a novel innate immune evasion factor in the context of KSHV infection and supports HO-1 inhibition as a viable therapeutic strategy for KS.
KW - CO
KW - Carbon monoxide
KW - HO-1
KW - Heme oxygenase-1
KW - Innate immunity
KW - KSHV
KW - TLR4
UR - http://www.scopus.com/inward/record.url?scp=85018278673&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85018278673&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2017.00568
DO - 10.3389/fmicb.2017.00568
M3 - Article
AN - SCOPUS:85018278673
SN - 1664-302X
VL - 8
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
IS - APR
M1 - 568
ER -