The impact of methodology on the reproducibility and rigor of DNA methylation data

Detlev Boison, Susan A. Masino, Farah D. Lubin, Kai Guo, Theresa Lusardi, Richard Sanchez, David N. Ruskin, Joyce Ohm, Jonathan D. Geiger, Junguk Hur

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Epigenetic modifications are crucial for normal development and implicated in disease pathogenesis. While epigenetics continues to be a burgeoning research area in neuroscience, unaddressed issues related to data reproducibility across laboratories remain. Separating meaningful experimental changes from background variability is a challenge in epigenomic studies. Here we show that seemingly minor experimental variations, even under normal baseline conditions, can have a significant impact on epigenome outcome measures and data interpretation. We examined genome-wide DNA methylation and gene expression profiles of hippocampal tissues from wild-type rats housed in three independent laboratories using nearly identical conditions. Reduced-representation bisulfite sequencing and RNA-seq respectively identified 3852 differentially methylated and 1075 differentially expressed genes between laboratories, even in the absence of experimental intervention. Difficult-to-match factors such as animal vendors and a subset of husbandry and tissue extraction procedures produced quantifiable variations between wild-type animals across the three laboratories. Our study demonstrates that seemingly minor experimental variations, even under normal baseline conditions, can have a significant impact on epigenome outcome measures and data interpretation. This is particularly meaningful for neurological studies in animal models, in which baseline parameters between experimental groups are difficult to control. To enhance scientific rigor, we conclude that strict adherence to protocols is necessary for the execution and interpretation of epigenetic studies and that protocol-sensitive epigenetic changes, amongst naive animals, may confound experimental results.

Original languageEnglish (US)
Article number380
JournalScientific Reports
Volume12
Issue number1
DOIs
StatePublished - Dec 2022

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'The impact of methodology on the reproducibility and rigor of DNA methylation data'. Together they form a unique fingerprint.

Cite this